Проблемы преемственности по математике
между начальной школой и 5 классом
Переход из начальной в среднее звено школы традиционно считается одной из наиболее педагогически сложных школьных проблем, а период адаптации в 5-м классе – одним из труднейших периодов.
Проблема преемственности в обучении математике приобрела особое значение в связи с широким внедрением Федерального государственного образовательного стандарта. ФГОС направлен на обеспечение преемственности основных образовательных программ начального общего, среднего (полного) общего образования.
Цели обучения и подход к обучению имеют большие различия. Поэтому на выходе из начальной школы выпускник должен владеть определенным набором математических знаний и умений, иметь соответствующую логическую подготовку и определенный уровень математической грамотности, позволяющий ему успешно изучать математику и смежные предметы на основной ступени обучения.
Приведу сравнительную диаграмму качества обученности учащихся 5 класса.
Перевод из младшей школы в среднюю – переломный момент в жизни ребенка, так как
осуществляется переход к новому образу жизни, к новым условиям деятельности, к
новому положению в обществе, к новым взаимоотношениям со взрослыми, со
сверстниками, с учителями. Пятый класс – трудный и ответственный этап в жизни
каждого школьника. Учебная и социальная ситуация пятого класса ставит перед
ребенком задачи качественно нового уровня по сравнению с начальной школой, и
успешность адаптации на этом этапе влияет на всю дальнейшую школьную жизнь.
Переходный период из начальной школы в основную сказывается на всех
участниках образовательного процесса: учащихся, педагогах, родителях,
администрации школы.
Перечислю некоторые причины , возникающие при переходе из начальной школы в
среднюю:
-сменой
социальной обстановки;
-изменением роли учащегося;
-увеличением учебной нагрузки;
-изменением режима дня;
-разностью систем и форм обучения;
-нестыковкой программ начальной и основной школы;
-различием требований со стороны учителей-предметников;
-изменением стиля общения учителей с детьми.
Переходя из четвёртого класса в пятый, ученик попадает в новый мир. В
средней школе коренным образом меняются
условия обучения: дети переходят от одного
основного учителя к системе классный
руководитель – учителя-предметники. Каждый учитель по-своему ведёт урок,
оценивает знания и т. д. И часто школьник теряется в этом мире. И одной из
наиболее часто встречающихся проблем является адаптация к
новым учителям, что сопровождается часто
конфликтами, взаимным недовольством учителей и учеников друг другом.
В 5-м классе количество предметов увеличивается до 8-12, но самое
главное – учителей будет столько же,
и у каждого свои требования. Причем все
уроки будут вестись в разных кабинетах. Чтобы избежать трудностей, необходимо
учителям-предметникам договориться и выдвинуть в начале учебного
года единые требования к пятикласснику.
В нашей гимназии учителя начальной школы работают в основном по УМК «Школа 2100». К сожалению продолжения в основной школе этот УМК не имеет. Поэтому учителя работают по учебникам других авторов.
Как известно, одной из основных образовательных задач, стоящих перед начальной школой является формирование у детей вычислительных навыков в процессе обучения арифметическим действиям с натуральными числами. Неуспевающих среди младших школьников практически нет, а средний балл успеваемости достаточно высок. Между тем при переходе в пятый класс ситуация меняется. Успеваемость падает. Учителя жалуются на плохую подготовку выпускников начальной школы, на то, что дети за лето забывают многое из того, чему их научили раньше.
О неблагополучии с подготовкой выпускников начальной школы к дальнейшему обучению свидетельствует и то, что при изучении математики в пятом классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Между тем, беседы с учителями математики и личные наблюдения показывают, что времени на изучение материала в средних и старших классах не хватает.
Несмотря на обучение в начальной школе и повторение в 5 - 6 классах вычислительные трудности многие ученики продолжают испытывать всё время обучения в школе. Достаточно большой процент детей к седьмому классу обращается к калькулятору даже при выполнении простейших вычислений. Одну из причин такого явления является то, что обучение в начальной школе во многом построено с опорой на механическую память. Яркий пример тому - таблица умножения, на заучивание которой отводится в младших классах много времени, и к повторению которой постоянно возвращаются на протяжении всего обучения в начальной школе. А в средней школе, как только она перестаёт быть одним из главных объектов внимания и осознаваться как нечто насущно необходимое, таблица умножения стремительно забывается.
Психологами убедительно доказано, что детям младшего школьного возраста совершенно необходимо знать, чему новому они научились . У ребёнка должно быть ощущение продвижения вперёд. Идеально, когда он может каждый день сказать себе и окружающим, что нового он узнал.
.
Обучение с самого начала должно быть систематичным и входить в общую систему непрерывного образования.
Проблемы преемственности в преподавании математики между начальной школой и 5 классом можно поделить на три группы: организационно-психологические; общеучебные умения и навыки; специальные математические знания, умения и навыки.
Специальные математические знания, умения и навыки.
1. Недостаточные умения устных вычислений (все арифметические действия в пределах до ста учащиеся должны выполнять устно).
Возможности разрешения: постоянное подкрепление знаний таблиц сложения и умножения, систематическое проведение содержательного и напряженного устного счета.
2. Ошибки в письменном делении многозначных чисел и письменном умножении многозначных чисел.
Возможности разрешения: регулярное повторение всех этапов алгоритма выполнения деления и умножения, систематическое включение в устную работу заданий на табличное умножение и деление, сложение и вычитание.
3. Слабое знание правил порядка действий (в том числе и в выражениях со скобками).
Возможности разрешения: после записи вычислительных примеров начинать с выделения отдельных «блоков», из которых он состоит, обращать внимание на «сильные» и «слабые» знаки арифметических действий, а затем расставлять номера действий.
4. Недостаточные умения решать текстовые задачи (даже в одно - два действия).
Возможности разрешения: предлагать сначала представить себе ситуацию, о которой идет речь в задаче, изобразить её на рисунке или схеме; при обсуждении решения – вопросы: как догадались, что первое действие именно такое?
5. Недостаточное развитие графических умений.
Возможности разрешения: регулярное выполнение чертежей как на бумаге в клетку, так и на нелинованной бумаге, построение фигур по командам.
6. Формальные представления об уравнении, его корне, способах проверки правильности решения уравнения.
Возможности разрешения: большее внимание уделять первым этапам формирования понятия переменной, верного и неверного равенства, нахождение значения выражения с переменной.
7. Недостаточно грамотная математическая речь учащихся.
Возможности разрешения: учителю чаще давать образцы чтения выражений, равенств, уравнений и неравенств, склонять числительные, тренировать школьников в верном чтении математических выражений, использовании названий натуральных чисел и дробей в косвенных падежах.
Рекомендации учителям- предметникам.
1. Посещение уроков в выпускных классах начальной школы педагогами-предметниками, классными руководителями будущих пятых классов с целью знакомства с технологией обучения в начальной школе. 2.Посещение уроков в пятых классах учителями начальной школы с целью наблюдения за детьми в адаптационный период. Рекомендации учителей начальной школы учителям-предметникам по организации индивидуальной дифференцированной работы на уроке с учетом особенностей учащихся.
3. Проводить анализ работы по организации адаптационного периода учащихся 5-х классов. Результаты входных контрольных работ.
Поэтому внимание педагогического коллектива нашей гимназии, ориентированного на обеспечение качества образования как условия устойчивого развития школьного сообщества, к проблемам адаптации школьников постоянно растет.
© ООО «Знанио»
С вами с 2009 года.