=x0+∆x
Приращение функции и приращение аргумента
y=f(x)
x0
f(x)=f(x0+∆x)
f(x0)
∆x
∆f
приращение аргумента:
x
y
∆х = х - х0 (1)
Приращение функции :
∆f = f(x0 +∆x)-f(x0) (2)
∆f = f(x)-f(x0) (3)
x
В окрестности точки х0 возьмём точку х
Пусть х0- фиксированная точка, f(х0)- значение функци в точке х0
Расстояние между точками х и х0 обозначим ∆х.Оно называется приращением аргумента и равно разности между х и х0:
Первоначальное значение аргумента получило приращение ∆х, и новое значение х равно х0+∆х
Функция f(х) тоже примет новое значение: f(x0+∆x)
Т.е., значение функции изменилось на величину f(x)-f(x0)= f(x0 +∆x)-f(x0),КОТОРАЯ НАЗЫВАЕТСЯ ПРИРАЩЕНИЕМ ФУНКЦИИ И ОБОЗНАЧАЕТСЯ ∆f
Дана функция f(x)
Задача 1 (о скорости движения).
По прямой, на которой заданы начало отсчета, единица измерения (метр) и направление, движется некоторое тело (материальная точка).
Закон движения задан формулой s=s (t), где t — время (в секундах), s (t) — положение тела на прямой (координата движущейся материальной точки) в момент времени t по отношению к началу отсчета (в метрах).
Найти скорость движения тела в момент времени t (в м/с).
Предположим, что в момент времени t тело находилось в точке М
пройдя путь от начала движения ОМ = s{t). Дадим аргументу t
приращение ∆t и рассмотрим момент времени t+∆t Координата
материальной точки стала другой, тело в этот момент будет
находиться в точке P : OP=s(t+∆t) Значит, за ∆t секунд тело переместилось из точки М в точку Р, т.е. прошло путь МР. Имеем:
MP=OP-OM=s(t+∆t)-s(t)=∆sПолученную разность мы назвали в § 26 приращением функции
Путь ∆s тело прошло за ∆t секунд.
Нетрудно найти среднюю скорость движения тела за промежуток времени [t;t+∆t] :
=
А что такое скорость v (t) в момент времени t (ее называют иногда
мгновенной скоростью)? Можно сказать так: это средняя скорость движения
за промежуток времени [t;t+∆t] при условии , что ∆t выбирается все меньше и
меньше; точнее: иными словами, при условии, что ∆t→0.Это значит , что
Подводя итог решению задачи 1, получаем:
Фиксируем момент t, в который мы хотим знать значение скорости v(t). Пусть h – небольшой промежуток времени, прошедший от момента t. За это время падающее тело пройдёт путь, равный s(t+h)-s(t).
Если промежуток времени h очень мал, то приближённо
s(t+h)-s(t)≈v(t)∙h, или , причём
последнее приближённое равенство тем точнее, чем меньше h. Значит величину v(t) скорости в момент t можно рассматривать как предел, к которому стремится отношение, выражающее среднюю скорость на интервале времени от момента t до момента t+h.
Сказанное записывают в виде
Задача: Определить положение касательной (tgφ)
х
у
0
М0
х0
f(x0)
М
х
f(x)
=x0+∆x
∆x
∆f
=f(x0+∆x)
φ
Секущая, поворачиваясь вокруг точки М0,
приближается к положению касательной
Предельным положением секущей МоМ,
когда М неограниченно приближается к Мо, является касательная
Пусть дан график функции f(х) и касательная, проходящая через точку М0 ,которая образует с положительным направлением оси ОХ угол φ
Отметим точку М, координаты которой рассмотрим как приращение координат точки М0
Через точки М и М0 проведём секущую, которая образует с осью ОХ угол
Будем перемещать точку М вдоль графика, приближая её к точке М0.Соответственно будет меняться положение секущей ММ0
При этом координата х точки М будет стремиться к х0
К чему будет стремиться приращение аргумента?
А к какому углу будет стремиться угол ?
Задача о мгновенной величине тока
Обозначим через q = q(t) количество электричества, протекающее через поперечное сечение проводника за время t.
Пусть Δt – некоторый промежуток времени, Δq = q(t+Δt) – q(t) – количество электричества, протекающее через указанное сечение за промежуток времени от момента t до момента t + Δt. Тогда отношение называют средней силой тока.
Мгновенной силой тока в момент времени t называется предел отношения приращения количества электричества Δq ко времени Δt, при условии, что Δt→0.
Выводы
Различные задачи привели в процессе решения к одной и той же математической модели – пределу отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю. Значит, эту математическую модель надо специально изучить, т.е.:
Присвоить ей новый термин.
Ввести для неё обозначение.
Исследовать свойства новой модели.
Определить возможности применения нового понятия - производная
Определение производной
Производной функции f в точке х0 называется предел отношения приращения функции к приращению аргумента при последнем стремящимся к нулю:
Возвращаясь к рассмотренным задачам, важно подчеркнуть следующее:
а) мгновенная скорость неравномерного движения есть производная от пути по времени;
б) угловой коэффициент касательной к графику функции в точке (x0; f(x)) есть производная функции f(x) в точке х = х0;
в) мгновенная сила тока I(t) в момент t есть производная от количества электричества q(t) по времени;
Г) скорость химической реакции в данный момент времени t есть производная от количества вещества у(t), участвующего в реакции, по времени t.
Определение производной.
Отношение приращения функции к приращению аргумента называется
разностным отношением
Производной функции f в точке х0 называется число к которому стремиться разностное отношение: при ∆х 0.
Задача. Найти производную функции f(x)=x2, используя определение.
Решение. 1) f(x0)=x02 - значение функции в фиксированной точке.
f(x0+∆x)=(x0+∆x)2-значение функции в произвольной точке.
2) Найдём приращение функции:
∆f=f(x0+∆x)-f(x0)=(x0+∆x)2-x02 =x02+2x0∆x+∆x2-x02=2x0∆x+∆x2.
3)Найдем разностное отношение:
4)При ∆x 0 2х0+∆х 2х0, значит (х02)'=2х0.
5)Для любого х: (х2)'=2х.
А это значит:
Аппарат производной можно использовать при решении геометрических задач, задач из естественных и гуманитарных наук, экономических задач оптимизационного характера.
И, конечно, не обойтись без производной при исследовании функции и построении графиков, решении уравнений и неравенств
«…нет ни одной области в математике, которая когда-либо не окажется применимой к явлениям действительного мира…» Н.И. Лобачевский
© ООО «Знанио»
С вами с 2009 года.