Данное пособие предназначено для самостоятельной работы студентов второго курса медицинских колледжей. Рассмотрены темы: " Математическая статистика. Расчет выборочных характеристик " , " Медицинская статистика. Медико-демографические показатели " , " Применение математических методов в профессиональной деятельности среднего медицинского персонала " .Пособие по статистике
статистика.docx
Государственное бюджетное профессиональное образовательное
учреждение Департамента здравоохранения города Москвы
«Медицинский колледж №1»
ПОСОБИЕ
ПО УЧЕБНОЙ ДИСЦИПЛИНЕ «МАТЕМАТИКА»
для студентов I I курса специальностей
060501 (34.02.01.) Сестринское дело
060604 (31.02.03.) Лабораторная диагностика
ПО ТЕМЕ: «Медицинская статистика»
1 20152016 уч.год
ОДОБРЕНО
ПЦК № 1
Общеобразовательных дисциплин
Протокол № 2
от « 10 » октября 2015 г.
Председатель предметной (цикловой)
комиссии
_____________/Давыдова И.В .
Разработано на основе
Федерального государственного
образовательного стандарта
среднего профессионального
образования по специальности
031.02.03 Лабораторная диагностика
034.02.01 Сестринское дело
Утверждаю
Заведующий учебным отделом
________________/ Е.В.Власова/
Составитель:
Давыдова Ирина Владимировна
Преподаватель ГБПОУ ДЗМ
«МК №1» филиал 1
2 Пояснительная записка
Пособие предназначено для организации самостоятельной работы студентов
по специальностям: Сестринское дело, Лечебное дело, Лабораторная
диагностика.
Тематика и задания выбраны с учетом реализации ФГОС по дисциплине
Математика.
В пособии включены теоретические материалы и практические задания для
подготовки к занятиям, краткая теоретическая справка по каждой изучаемой
теме, тестовые задания для самоконтроля, контрольноизмерительные
материалы для зачета.
3 Содержание
1. Математическая статистика. Расчет выборочных характеристик.
2. Медицинская статистика. Медико демографические показатели.
3. Применение математических методов в профессиональной
деятельности среднего медицинского персонала.
4 1. Математическая статистика. Расчет выборочных
характеристик.
Математическая статистика – наука о математических методах
систематизации и использования статистических данных для научных и
практических выводов.
Поиск новых методов диагностики и лечения, выбор наилучшего из уже
принятых – везде статистические соображения играют не последнюю роль.
Чтобы принять полноправное участие в обсуждении этих вопросов,
медицинский работник должен быть знаком с принципами и основными
методами статистики.
В результате применения статистического метода мы получаем оценку
вероятности того или иного предположения. Кроме того каждый
статистический метод основан на собственной математической модели и
результат его правильный настолько, насколько эта модель соответствует
действительности.
Случайная величина величина, которая в результате испытания может
примет одно и только одно возможное значение наперед не известное и не
зависящее от случайных величин, которые заранее не могут быть учтены.
Обозначение случайной величины: X,Y,Z.
Значения случайной величины : x1,x2,x3,…,y1,y2,y3…
Дискретной случайной величиной называют такую величину, множество
значений которой либо конечное, либо бесконечное, но счетное.
5 Счетное множество это бесконечное множество, элементы которого
возможно пронумеровать натуральными числами.
Примеры дискретной случайной величины:
o количество пациентов с диагнозом « грипп »,
o число патронажей на дому в день,
o количество поставщиков лекарственных препаратов в аптеку,
o пульс; рост, вес, артериальное давление…
Непрерывной случайной величиной называют случайную величину, которая
может принимать все значения из некоторого конечного или бесконечного
промежутка. Множество возможных значений непрерывной случайной
величины бесконечно и несчетно. Возникает при измерениях.
Примеры непрерывных случайных величин:
o расстояние между населенными пунктами;
o показатели крови (холестерин, гемоглобин, сахар…).
Закон распределения дискретной случайной величины
xi
pi
x1
p1
x2
p2
x3
p3
…
…
xk
pk
Таблица задает закон распределения случайной величины X, если
выполняется равенство:
pi=¿
k
∑
¿
p1+p2+…+pk=1
i=1
Генеральная статистическая совокупность
исследуемых объектов (бесконечное большая величина).
Выборочная совокупность или выборка множества объектов, случайно
совокупность всех
отобранных из генеральной совокупности.
Число наблюдений в совокупности называется ее объемом.
N объем генеральной совокупности.
n объем выборки.
6 Варианта xi значения случайной величины.
Частота встречаемости ni – означает, сколько раз встретилось значение
xi .
Вариационный ряд выборка, представляющая собой неубывающую
числовую последовательность.
Статистическое распределение (статистический ряд) записывают в виде
таблицы:
xi
ni
x1
n1
x2
n2
x3
n3
…
…
xk
nk
xi варианты,
ni частота встречаемости варианты xi .
Для графического изображения статистического дискретного ряда на
координатной плоскости откладываются точки ( xi,ni ) и соединяются
отрезками,
образуя
ломаную
полигон
частот.
6
5
4
3
2
1
0
значения
вариант xi
x1 x2 x3 … xn
Выборочное распределение записывают в виде таблицы.
xi
x1
x2
x3
…
xk
7 p2=
n2
n
p3=
n2
n
pi
p1=
n1
n
…
pi относительные частоты встречаемости значения xi
n = n1+n2+…+nk объем выборки
pk=
nk
n
Основные числовые характеристики случайной величины
Размах выборки разность между максимальным и минимальным значением
вариант.
Медиана (Ме) это серединная, центральная варианта, делящая вариационный
ряд пополам на две части.
Например, если число наблюдений составляет 33, медианой будет варианта,
занимающая 17е ранговое место, так как в обе стороны от нее находится по
16 наблюдений . В ряде с четным числом наблюдений за медиану принимается
полусумма в центре находящихся двух величин.
Мода (Мо) это чаще всего встречающаяся или наиболее часто
повторяющаяся величина признака. При приближенном нахождении моды в
простом (на сгруппированном) ряде, она определяется как варианта с
наибольшим количеством частот.
Математическое ожидание (выборочное среднее) среднее арифметическое
выборки.
Если задано выборочное распределение:
´Х=М(Х)=∑
k
i=1
xi∙pi=x1∙p1+x2∙p2+…+xk∙pk
Если задано статистическое распределение:
k
∑
i=1
´Х=М(Х)=
xi∙pi
n =
x1∙n1+x2∙n2+…+xk∙pk
n
Практическое применение средних величин
1.Для оценки состояния здоровья, например, параметров физического
развития (средний рост, средний вес, средний объем жизненной емкости
8 легких и т.д.) соматических показателей (средний уровень сахара в крови,
средний пульс и т.д.)
2. Для оценки организации работы лечебнопрофилактических и санитарно
противоэпидемических учреждений, а также деятельности отдельных врачей
и других медицинских работников (средняя длительность пребывания
больного на койке, среднее число посещений на 1 ч приема).
3. Для оценки состояния окружающей среды.
Дисперсия («рассеяние») случайной величины мера разброса случайной
величины, равная математическому ожиданию квадрата отклонения
случайной величины от ее математического ожидания. Чем больше разброс,
тем больше дисперсия.
Если случайная величина задана статистическим рядом:
D(X)= ∑
k (xi− ´x)2
i=1
n ∙ni
Если величина задана выборочным распределением:
k
D(X)= ∑
i=1
(xi− ´x)2∙pi
Также можно воспользоваться формулой:
D(X)=M( X2
)
M(X)
¿
¿
¿
где M( X2¿ = ∑ xi
2pi
Среднее квадратическое отклонение:
σ(X) = √D(X)
При помощи квадратического отклонения можно установить степень
типичности средней, пределы рассеяния ряда, пределы колебаний вокруг
средней отдельных вариант.
9 Применение среднего квадратического отклонения дает возможность оценки
и сравнения разнообразия нескольких однородных рядов распределения, так
как σ величина именная, выражается абсолютным числом в единицах
изучаемой совокупности (см, кг,мл/л, и т.д)
Примеры решения задач:
1.Статистическое распределение случайной величины представлено в
таблице. Вычислите объем выборки и размах, моду (Мо) и медиану (Ме).
Xi
Pi
1
2
2
3
5
3
6
5
8
6
10
4
12
4
13
2
15
1
Решение:
1.Объем выборки сумма ni
n=2+3+3+5+6+4+4+2+1=30
2. Размах выборки: ∆ =151=14.
3. Модой является варианта x=8, Мо=8.
4. Медианой является полусумма 15 и 16 вариант x15=x16=8, значит Ме=8
Ответ: n=30; ∆=14; Мо=8; Ме=8.
2. Случайная величина X задана законом распределения:
xi
pi
1
3
5
7
0,2
0,1
0,3
0,4
Вычислите выборочные характеристики: математическое ожидание,
дисперсию, среднее квадратическое отклонение.
Решение:
1.Вычислим математическое ожидание по формуле
´Х=М(Х)=∑
k
i=1
xi∙pi=x1∙p1+x2∙p2+…+xk∙pk
n
´X =M(Х)= ∑
i=1
xi∙pi =1 ∙ 0,1+3 ∙0,3+5∙0,4+7∙0,2=4,4
10 M(X)=4,4
2. Вычислим дисперсию 2мя способами:
1 способ по формуле D(X)= ∑
(xi− ´x)2∙pi
k
i=1
D(X)= (1−4,4)2∙ 0,1+ (3−4,4)2∙0,3+(5−4,4)2∙0,4 + (7−4,4)2∙0,2 =
11,56 ∙0,1+¿ 1,96 ∙ 0,3+0,36 ∙ 0,4+6,76 ∙0,2 =1,156+0,588+0,144+1,352=
3,24
2 способ по формуле
D(X)=M( X2
Рассчитаем М( X2
Рассчитаем дисперсию D(X)=M( X2
) [M(X)]2
)= 12∙0,1+32∙0,3+52∙0,4+72∙0,2 =0,1+2,7+10+9,8=22,6
) [M(X)]2=22,6−4,42=3,24
3. Среднее квадратическое отклонение:
σ(X)=√D(X)=√3,24=1,8
Ответ:
М(Х)=4,4; D(X)=3,24; σ(X)=1,8
3. Ежедневное количество студентов, посещающих методический
кабинет на протяжения ряда дней следующее:
15, 17, 16, 18, 20, 21, 18, 17, 20,15
18, 17, 16, 19, 17, 16, 18, 19, 18, 19
Составить статистическое распределение выборки
Решение:
xi
ni
pi
15
2
0,1
16
3
0,15
17
4
0,2
18
5
19
3
0,25
0,15
20
2
0,1
21
1
0,05
Вопросы для само подготовки .
1. Отличие математической статистики от теории вероятностей.
2. Понятие случайной величины. Закон распределения случайной величины.
11 3. Генеральная и выборочная совокупности.
4. Вариационный ряд. Выборочное распределение. Статистическое
распределение.
5. Выборочное математическое ожидание (выборочное среднее), дисперсия,
среднее квадратическое отклонение, коэффициент вариации.
Практические задачи
I вариант
1. Через каждый час измерялось напряжение тока в электросети. При этом
были получены следующие значения (в В):
227; 219; 223; 220; 222; 218; 219; 222; 221; 226; 226; 218; 220; 220; 221; 225;
224; 217; 219; 220. Постройте статистическое распределение.
2. В аптеке получены статистические данные о числе проданных упаковок
препарата Арбидол за ноябрь. Эти данные собраны в таблицу. Найдите
математическое ожидание.
Число проданных упаковок Арбидола
Число дней в которых было продано
столько упаковок препарата Арбидол
0
3
3
9
1
7
2
8
4
2
5
1
3. Исследуя продолжительность (в сек) физической нагрузки до развития
приступа стенокардии у 12 человек с ишемической болезнью сердца,
получили следующие данные: 289, 203, 359, 243, 232, 210, 215, 246, 224, 239,
220, 211. Найди среднюю продолжительность допустимой нагрузки для
больных с ИБС.
4. После определенной физической нагрузки у группы пациентов с
артериальной гипертензией среднее значение артериального давления 179 мм
рт ст, среднее квадратическое отклонение показателя 8 мм рт ст; частота
сердечных сокращений в среднем 90 уд/мин, среднее квадратическое
отклонение 3 уд/мин. Определите какой признак варьируется сильнее АД или
ЧСС.
5. Найдите математическое ожидание дискретной случайной величины X,
зная закон ее распределения.
X
р
1
0,05
0
0,2
1
0,4
2
0,3
3
0,05
II вариант
12 Из продукции, произведенной фармацевтической фабрикой за месяц,
1.
случайным образом отобраны 15 коробочек некоторого гомеопатического
препарата, количество таблеток в которых оказалось равным соответственно
50, 51, 48, 52, 51, 50, 49, 50, 47, 50, 51, 49, 50, 52, 48. Представьте эти данные
в виде дискретного статистического ряда распределения и постройте полигон
частот.
2. В результате измерений диаметра капилляра в стенке легочных альвеол
были получены следующие результаты: 2,83 мкм; 2,81; 2,85; 2,87; 2,86; 2,83;
2,85; 2,83; 2,84 мкм. Вычислите выборочное среднее.
3. В результате измерений были получены следующие результаты: 3,2; 3,4;
3,3; 3,5; 3,6; 3,7; 3,4; 3,3; 3,4; 3,7; 3,2. Вычислите выборочное среднее.
4. При подсчете количества листьев у одного из лекарственных растений
были получены следующие данные: 8, 10, 7, 9, 11, 6, 9, 8, 10, 7. Вычислите
выборочное среднее, выборочную дисперсию.
5.
Проведены измерения вязкости крови у 9 больных. Значения
относительной вязкости крови у больных составили: 5, 4, 3, 2, 6, 3, 4, 8, 10.
Вычислите выборочное среднее, выборочную дисперсию.
III вариант
1. Найдите дисперсию случайной величины X, которая задана следующим
законом распределения:
Xi
1
Pi 0,3 0,5
2
5
0,2
2. Найдите дисперсию случайной величины X, которая задана следующим
законом распределения:
X 2
P 0,1
3
0,6
5
0,3
3.
Для данной выборки составьте вариационный ряд, статистическое и
выборочное распределения. Найдите объем выборки n, размах выборки Δ,
математическое ожидание М(х), дисперсию D(x), среднее квадратическое
отклонение, коэффициент вариации.
2, 6, 5, 4, 6, 2, 5, 6, 6, 2
13 4. Для выборки 4, 5, 3, 2, 1, 2, 0, 7, 7, 3 вычислите числовые характеристики
случайной величины: моду, медиану, математическое ожидание, дисперсию,
среднее квадратическое отклонение, коэффициент вариации.
5. Число состоящих на диспансерном учете больных с хроническими
заболеваниями у 9 участковых врачей: 148, 130, 151, 141, 114, 123, 136, 143,
120.
Вычислите математическое ожидание,
среднее
квадратическое отклонение, коэффициент вариации.
дисперсию,
2.Медицинская статистика. Медикодемографические
показатели.
Медицинская статистика (санитарная статистика) — отрасль статистики,
изучающая явления и процессы в области здоровья населения и
здравоохранения.
Основными задачами медицинской статистики являются разработка
специальных методов исследования массовых процессов и явлений в
выявление наиболее существенных
медицине и здравоохранении;
закономерностей и тенденций в здоровье населения в целом и в различных его
группах (возрастных, половых, профессиональных и др.) во взаимосвязи с
конкретными условиями и образом жизни: изучение и оценка состояния и
динамики развития сети, деятельности учреждений здравоохранения и
медицинских кадров.
Интенсивный показатель определяет интенсивность развития (частоту,
уровень, распространенность) явления в среде, которая продуцирует это
явление.
Интенсивный показатель =
(100; 1000; 10000 и т.д )
явление
среда
∙10n
Примерами интенсивных коэффициентов могут служить коэффициенты
рождаемости, смертности, заболеваемости, инвалидности.
14 Экстенсивный показатель характеризует распределение явления на его
составленные части, его внутреннюю структуру или отношение частей к
целому (удельный вес).
частьсовокупности(явления)
всясовокупность(явление)
∙10n
Экстенсивный показатель =
Множитель 10n
Чем реже явление встречается, тем больше множитель.
Показатель интенсивности выражается:
зависит от распространенности явления в среде.
при основании 100 человек – в процентах (%);
при основании 1000 человек – в промилле (%0)
при основании 10000 человек – а продецимилле (%00)
при основании 100 000 человек – в просантимилле (%000)
Медицинская демография изучает процессы воспроизводства населения с
позиций медицины.
Основные разделы демографии:
1.Статика населения
2. Динамика населения
Статика населения изучает численность и состав населения на определенный
момент времени по следующим признакам:
пол
возраст
социальные группы
национальность
язык
семейное положение
образование
место жительства (город, село)
плотность населения и др.
Основным источником сведений о численности и составе населения, его
территориальном размещении служат данные переписи населения, которые
принято проводить каждые 10 лет.
Динамика населения изучает изменение численности населения за счет его
механического и естественного движения.
15 Механическое движение населения миграция.
Естественное движение населения – (воспроизводство населения) – изменение
численности населения, происходящее за счет рождаемости и смертности.
Оценка показателей рождаемости и смертности производится с обязательным
учетом их динамики, а также факторов их определяющих.
Рождаемость частота рождений за 1 год на 1000 населения, проживающего на
конкретной территории. Он дает представление о том, с какой скоростью
увеличивается население за счет рождаемости на изучаемом отрезке времени.
числородившихсяживымизагод∙1000
среднегодоваячисленностьнаселения
Коэффициент рождаемости =
Среднегодовая
численность
населения
=
1
2 (численностьнаселениянаначалогода+численностьнаселениянаконецгода)
Шкала оценки уровня рождаемости населения
Уровень рождаемости
Коэффициент рождаемости на 1000 жителей (%0)
Очень высокий Более 40,0
Высокий 2530
Средний 1525
Низкий 1015
Очень низкий Менее 10,0
Смертность частота смертных случаев за год на 1000 населения на
конкретной территории.
Коэффициент смертности =
числоумершихзагод∙1000
среднегодоваячисленностьнаселения
Оценка показателя смертности:
Уровень смертности
Высокий
Средний
Низкий
Коэффициент смертности (%0)
> 15
915
79
Детская смертность частота смертных случаев среди детского населения (0
14 лет 11 мес 29 дней).
16 Оценка показателей детской смертности
Уровень детской
смертности
Высокий
Средний
Низкий
Коэффициент детской смертности (%0)
>50
3050
<30
Младенческая смертность – смертность детей первого года жизни.
В практическом здравоохранении показатель младенческой смертности
рассчитывается:
Показ.
млад.
смертн.
=
числоумершихввозрастедогодавданномгоду∙1000
числородившихсяживымивданномгоду
Метод Ратса:
Показ. млад. смертн. =
числоумершихввозрастедогодавданномгоду×1000
детейродившихсяживымивданномгоду+1/3детейродившихсяживымивпредыдущемгоду
2
3
Оценка уровня младенческой смертности
Коэффициент младенческой смертности (%0)
До 10
1019,9
20 и более
Оценка уровня
младенческой смертности
Низкий
Средний
Высокий
Перинатальная смертность включает мертворождаемость (смерть наступила
до родов или в родах ).
Перинатальная
смертность
=
(числомертворожденных+умершихвпервые168ч)×1000
числородившихсядетей(живыхимертвых)
17 Неонатальная смертность смерть наступила в течение 168 ч после рождения
ребенка.
Показатель НС=
Числоумершихвнеонатальномпериоде×1000
Числоживорожденных
Типы населения:
1. Прогрессивный доля лиц в возрасте до 14 лет превышает долю лиц
старше 50 лет.
2. Стационарный – доли лиц в указанных возрастных группах имеют
равное значение.
3. Регрессивный доля лиц старше 50 лет больше чем доля лиц младше 14
лет.
Методика (алгоритм) анализа демографических показателей
Для оценки структуры населения необходимо:
1. Рассчитать показатели удельного веса каждой возрастной группы.
2. Определить тип структуры населения и сделать вывод.
Практические задачи.
Вариант I
1. В городе проживает 120 000 человек (среда). В предыдущем году родилось
1080 детей (явление). Определите и оцените показатель рождаемости (на 1000
населения).
2. Рассчитать статистический показатель рождаемости в г. А, если число
родившихся живыми в данном году 6400, а среднегодовая численность
населения данного города 800000. Оцените результат.
3. Вычислите и оцените показатель рождаемости в городе Н., если его
население 300 000 человек, родилось 6000 детей, в том числе 40
мертворожденных.
4. Население города Н. в 2005 г. составило 1 318 600 человек. В течение года
умерло 22 944 человек. Вычислить коэффициент смертности (интенсивный
показатель), оценить результат.
5. В городе А в 2010 г. численность населения 60 000 чел. Родилось 1 200 чел.
Умерло 360 чел. Вычислите: а) Коэффициент рождаемости, б) Коэффициент
смертности, в) Коэффициент естественного прироста. Дайте оценку
демографической ситуации.
18 Вариант II
1. В 2010 г. население города А. составило 1318600 человек, в том числе
мужчин – 605300 человек. Вычислить долю мужчин (экстенсивный
коэффициент).
2. Численность населения города С. составляет – 2181300 человек. Из них:
городское население – 1201200 человек; сельское население – 980100 человек.
Рассчитать показатели: а) городского; б) сельского населения города С.
3. В городе Р. Нской обл. в 1984 г.: численность населения 500 000 человек,
родилось 9000, умерло 4000. В числе умерших детей в возрасте до 1 года –
270, в том числе детей, умерших до 1 мес. – 130. Рассчитайте следующие
показатели: а) Коэффициент рождаемости; б) Коэффициент смертности; в)
Смертность детей до года в структуре смертности; г) Смертность детей до 1
месяца в структуре смертности. Оцените результаты.
4. Пользуясь приведенными данными, определите возрастную структуру
детского населения, если численность детского населения города Н.
составляет – 6290. В том числе в возрасте: от 0 до 1 года – 350 детей; от 1 до
3 лет – 830 детей; от 4 до 6 лет – 1510 детей; от 7 до 10 лет – 1850 детей; от
11 до 14 лет – 1750 детей.
Вариант III
1. Пользуясь приведенными данными, рассчитайте структуру причин смерти
населения города Н., если умерли 1660 человек, в том числе:
а) от болезней системы кровообращения – 940 человек;
б) от злокачественных новообразований – 220 человек;
в) от травм, отравлений и других последствий воздействия внешних причин –
200 человек;
г) от болезней органов дыхания – 80 человек;
д) от болезней органов пищеварения – 40 человек;
е) от болезней нервной системы – 25 человек;
ж) от инфекционных и паразитарных болезней – 20 человек;
з) от прочих причин – 135 человек.
2. Пользуясь приведенными данными, рассчитайте все возможные
интенсивные и экстенсивные показатели, если численность населения города
Д. составляет – 500000 человек. Зарегистрировано 300000 первичных
обращений населения в лечебные учреждения, в том числе по поводу:
болезней сердечнососудистой системы – 98000; болезней органов дыхания –
110000; травм, отравлений и других последствий воздействия внешних
причин – 55000; болезней нервной системы – 22000; других причин – 15000.
19 Интенсивные показатели:
а) первичное обращение
б) болезни ССС
в) болезни органов дыхания
г) травмы, отравления
д) болезни нервной системы
е) другие причины
Экстенсивные показатели:
ж) болезни ССС в структуре заболеваемости
з) болезни ОД в структуре заболеваемости
и) травмы, отравления в структуре заболеваемости
к) болезни НС в структуре заболеваемости
л) другие причины в структуре заболеваемости
3. Пользуясь приведенными данными, рассчитайте интенсивные и экстен
сивные показатели, если численность населения города П. составляет – 1 308
400 человек. Из них в возрасте: 0 14 лет – 223 600 человек 15 49 лет – 647
800 человек 50 лет и старше – 437 000 человек
Родилось (за год) – 9684 человек.
Умерло (за год) – 22 508 человек.
4. В городе А в 2005 г. Родилось живыми в 2005 г. 1200 чел. Мертворож
денных 5 чел. Умерло детей в возрасте до 1 г. 24 чел.
Умерло детей в возрасте до 1 м. 12 чел.
Умерло детей на 1 неделе жизни 12 чел.
Родилось живыми в 2004 г. 1180 чел
Выполните оценку показателей:
а) коэффициента младенческой смертности.
б) коэффициента неонатальной смертности.
в) коэффициента перинатальной смертности.
5. В городской клинической больнице в течение года проходили лечение 4088
больных (из них 143 умерло). Ими проведено 65410 койкодней, число
среднегодовых развернутых коек было 190. Найдите: а) показатель средней
длительности пребывания больного на койке, б) оборот койки, в)
эффективность лечения.
20 3. Применение математических методов в профессиональной
деятельности среднего медицинского персонала
1. Типовые задачи на проценты и методы их решения
При выполнении своих профессиональных обязанностей медицинским
работникам часто приходится производить различные математические
вычисления. От правильности произведенных расчетов зависит здоровье, а
иногда и жизнь пациентов.
В хозяйственных и статистических расчетах, во многих отраслях науки части
величин принято выражать в процентах. Очень часто в лабораторной практике
приходится встречаться со случаями приготовления растворов с
определенной массовой долей растворенного вещества, смешением двух
растворов разной концентрации или разбавлением крепкого раствора водой.
Процентом (от латинского pro centro c сотни) называется сотая доля какого
либо числа и обозначается знаком %
Раствор= сухое вещество + растворитель
X % раствор – это значит:
21 1. В 100 мл раствора содержится X г сухого вещества
2. Раствор приготовлен в соотношении X: 100/
Выделим основные типы задач на проценты
Тип задачи
1.Выразить число в
процентах
2.Выразить процент
десятичной дробью или
натуральным числом
3.Нахождение
процентов данного
числа
4.Нахождение числа по
его процентам
5.Нахождение
выражения
одного
числа в процентах
другого
(или
процентное отношение
чисел)
Примеры
Пример 1.
0,52= 052 ∙ 100 % = 52 %
Пример 2.
34
100 = 0,34
34%=
Пример 3.
Вода составляет 60% от массы тела человека. Сколько воды
содержится в теле человека массой 70 кг?
Решение: 70 ∙ 60
100=¿ 42 кг
Ответ: 42 кг содержится в теле человека массой 70кг
Пример 4. Сколько сотрудников должно быть в поликлинике,
если работает всего 32 человека, что составляет 80 % от
требуемого количества специалистов?
Решение:
32
80
∙100 =40
Ответ: 40 человек
Пример 5. Позвоночник содержит 34 позвонка, из которых 5 в
поясничном отделе. Какой процент составляют
позвонки поясничного отдела от общего числа
позвонков?
Решение:
5
34
∙100 = 14,7 %
Ответ: 14,7 % составляют позвонки поясничного отдела от
общего количества позвонков
2.Методы решения задач на проценты
При решении задач на проценты приходится сталкиваться с понятием
«концентрация» , «процентное содержание вещества в растворе».
Концентрация – отношение массы растворенного вещества к массе раствора.
Процентное содержание отношение массы растворенного вещества к массе
раствора, выраженное в процентах.
Задача: Определите концентрацию раствора, полученного при слиянии 150 г
30 %го и 250 г 10 %го растворов какой либо соли.
22 Дано: m1=150,ω1=30
m2=250,ω2=10
Найти: ω3
Примечание: массовые доли обязательно будут удовлетворять неравенству :
ω1>ω3>ω2
Решение:
I способ. Метод пропорций
Массу вещества в первом (30 %) растворе находим методом пропорций:
100 г рра 30 г вва,
150 г рра x г вва,
150∙30
100
x =
= 45 г
Массу вещества во втором (10 %) растворе находим аналогично:
100 г рра – 10 г вва,
250 г рра – y г вва,
250∙10
100 =25г .
y=
Следовательно, 400 г нового раствора содержит 45+25= 70 г растворенного
вещества.
Теперь определим концентрацию нового раствора:
400 г рра 70 г вва
100 г рра – z вва
100∙70
400 =17,5г,или17,5
z =
Ответ: 17,5 % процентная концентрация вещества в полученном растворе.
II способ. «Правило креста» (или «Конверт Пирсона»)
23 Метод заключается в применении схем (будем считать, что
ω1>ω3>ω2
¿
)
ω1 ω3−¿ ω2 m1
ω3
ω2 ω1−¿ ω3 m2
ω
¿
¿
(¿1−ω¿¿2)
¿
m1
(ω3−ω2)
m2
=
Отношение массы первого раствора к массе второго раствора есть отношение
разности массовых долей растворенного вещества в смеси и во втором
растворе к разности соответствующих величин в первом растворе и в смеси.
Соответственно схеме подставим данные нашей задачи:
30 % ω3 10% 150 г
ω3
10 % 30 % ω3−250г
ω
(¿¿3−10)
(30−ω3)
150
250=¿
Тогда (30−ω3)∙150=(ω3−10)∙250
4500 150 ω3=250ω3−2500
400 ω3 =7000
24 ω3= 7000
400 = 17,5 %
Ответ: 17,5 %
3 способ. Алгебраический.
Масса растворенного вещества в смеси будет слагаться из масс растворенного
вещества в исходных растворах, поэтому для удобства решения, данные
запишем в виде схемы:
150 г
30%
250 г
10 %
+
(150+250) г
=
ω3
Масса сухого вещества в первом растворе 150 ∙ 30
100
Масса сухого вещества во втором растворе 250 ∙ 10
100
г
г
Масса сухого вещества в получившемся растворе
ω3
100 (150+250) г
Составим уравнение:
100 +250∙ 10
150 ∙ 30
100=
ω3
100 (150+250)
Умножим обе части равенства на 100:
150 ∙ 30 + 250 ∙10 = ω3(150+250)
ω3=
(150∙30+250∙10)
150+250
=17,5
Ответ: 17,5 %
Вопросы для самоподготовки
1. Что такое процент?
2. Как найти 1% от числа?
3. Как найти само число, если известен его 1 %?
4. Как перевести проценты в десятичную дробь?
5. Как перевести десятичную дробь в проценты?
25 6. Запишите в виде дроби 7%
7. Сравните 0,1 или 1%
8. Выразите в процентах 0,005
9. Сколько процентов составляют 100 мл от 1 л?
10. Какую часть составляет сухое вещество в 2% растворе?
11. Сколько граммов сухого вещества в 100 мл 20% раствора?
12. Переведите в проценты отношение 2:50
13. Представьте в виде отношения 0,02%
14. Вычислите 11% от 200 мл
15. Вычислите процентное содержание чистого вещества в растворе,
приготовленном из 1кг вещества и 3кг воды
Эталон ответов:
1. сотая часть числа
2. разделить его на 100
3. умножить на 100
4. разделить на 100
5. умножить на 100
6. 0,07 или
7.
8. 0,5%
9. 10%
10. ,
11. 20г
Практические задачи
I вариант
1. Отделение функциональной диагностики обслуживало 40 человек в день.
После внедрения компьютерных технологий пропускная способность
отделения увеличилась на 35%. Сколько человек стало обслуживать
отделение?
26 2. С наступлением холодов количество больных с острыми респираторными
заболеваниями (ОРЗ) увеличилось до 15 человек в день, а до этого составляло
около 10 человек. На сколько процентов возросло число больных с ОРЗ?
3. 26 человек поступили в травмпункт с переломом конечностей, что
составило 13% от всех обратившихся. Сколько человек поступило в
травмпункт?
4. Объем крови в организме человека составляет 7% от массы тела. В малом
круге кровообращения содержится 2025%, а в большом – 7585%.
Определите объем циркулирующей крови в большом круге кровообращения
человека весом 90 кг.
5. Мышечная система человека составляет 40% от массы тела. На долю
мускулатуры нижних конечностей приходится 50% всей массы мышц.
Найдите массу мышц нижних конечностей человека весом 65 кг.
II вариант
1. Для раствора используется соотношение 2:500. Сколько литров раствора
можно приготовить из 3 кг чистого вещества?
2. Для раствора используется соотношение 5:200. Определите процентную
концентрацию вещества в таком растворе и сколько литров раствора можно
приготовить из 1,5 кг чистого вещества?
3. Имеется сухой лекарственный сбор 250 г. Для приготовления отвара
используется соотношение 30:200. Сколько литров отвара можно приготовить
из данного сбора? Какова процентная концентрация этого отвара?
4. Для устранения метаболического ацидоза больному внутривенно ввели
300мл 4% раствора гидрокарбоната натрия. Найдите массу сухого вещества в
этом растворе.
5. Отвар содержит 3% корней алтея. Сколько отвара можно приготовить из
600 г корней алтея?
III вариант
1. Для мытья палаты готовят хлорный раствор. Сколько нужно взять порошка
хлорной извести и воды, чтобы приготовить 10 кг 5% раствора хлорной
извести?
50 г вещества растворен в 200 г воды. Определите процентную
2.
концентрацию вещества.
27 3. Фурацилина в растворе 0,05%. Сколько раствора можно получить из 10
граммов фурацилина?
4. Сбор №4 содержит: цветков ромашки – 20%, побегов багульника – 20%,
цветков ноготков – 20%, травы фиалки – 20%, корней солодки – 15%, листьев
мяты – 5%. Сколько граммов каждой из трав содержится в 600 мл 10%
отвара?
5. Для промывания глаз требуется 0,1% раствор перманганата калия. Имеется
5% раствор. В каком соотношении необходимо разбавить имеющийся раствор
для приготовления 0,1% раствора?
Метрическая система единиц
Основные метрические единицы:
грамм (г) – мера массы
метр (м) – мера длины
литр (л) – мера объёма
производная единица
значение
микрограмм (мкг)
0,000001 г
производная
единица
дециметр (дм)
значение
0,1 м
0,01 м
миллиграмм (мг)
0,001 г
сантиметр (см)
миллиметр (мм)
0,001 м
микрометр (мкм)
0,000001 м
сантиграмм (сг)
дециграмм (дг)
декаграмм (даг)
гектограмм (гг)
килограмм (кг)
0,01 г
0,1 г
10 г
100 г
1000 г
Приставка
Коэффициент
Обозначение
Пример
28 Дека
Гекто
Кило
Деци
Санти
Милли
Микро
Нано
10
100
1000
0,1
0,01
0,001
0,000 001
0,000 000 001
да…
г…
к…
д…
с…
м…
мк…
н…
2 даг = 2 10 = 20 г
⋅
3 гл = 3 100 = 300 л
4 кг = 4 1000 = 4000 г
5 дг = 5 0,1 =0,5 г
6 сл = 6 0,01 = 0,06 л
8 мг =8 0,001 =0,008 г
⋅
⋅
⋅
⋅
⋅
9 мкм = 9 0,000 001 = 0,000 009 м
⋅
8 000 нм =
=8 000 0,000 000
⋅
001 = 0,000008 м
Долженствующий вес детей до года:
Математика в педиатрии
m = mпри рождении + месячные прибавки
месяц
прибавка
(г)
всего
прибавка
1
600
2
800
3
800
4
750
5
700
6
650
7
600
8
550
9
500
10
450
11
400
12
350
600
1400
2200
2950
3650
4300
4900
5450
5950
6400
6800
7150
Долженствующий вес у детей старше 1 года:
ДВ = 10, + 2n(кг), n число лет после года
Где 10,5 кг средний вес ребенка в 1 год, 2 кг среднестатистическая прибавка в
весе за 1 год (12.2)
Долженствующий вес ребенка после 10 лет:
ДВ = 30+4(n10), nчисло лет после года (12.3)
Долженствующий рост детей до года:
ДР = Lпри рождении +прирост (см) (12.4)
месяц
прирост
(см)
всего
прибавка
1
3
3
2
3
6
3
3
9
4
5
6
7
8
9
10
11
2,5
2,5
2,5
1,5
1,5
1,5
1
1
11,5
14
16,5
18
19,5
21
22
23
12
1
24
Долженствующий рост детей от 1 года до 10 лет
29 ДР= 75 + 5n (см), n –число лет после года (12.5)
где 75(см) –средний рост ребенка в 1 год, 5 (см) –среднестатистическая прибавка
роста за 1 год
Расчет питания (объемный способ)
Суточное количество молока от 0 до 1014 дней жизни можно рассчитать:
по формуле Зайцевой Г.И.:
суточное количество молока =
2% от массы ребенка при рождении xn, nдни жизни ребенка (12.6)
по формуле Финкельштейна: суточное количество молока (мл)
V=70⋅n (при массе тела ниже 3200г)
V = 80⋅n (при массе тела выше 3200г)
где n –дни жизни ребенка.
Для определения разовой потребности в пище суточный объём пищи делят на
число кормлений.
Суточный объем питания ребенка до 1 года составляет:
Возраст (мес)
до 2 –х мес.
24
46
>6
После 6 мес. суточный объем не более 1 литра
Доля от массы тела ребенка
1/5
1/6
1/7
1/8
Расчет питания (калорийный способ)
Возраст (месс.)
Потребность в ккал/кг в сутки
120
115
110
до 3 – х месс.
46
79
1012
1 литр женского молока содержит около 700 ккал
100
Разведение антибиотиков
«Полное разведение»такое разведение, при котором в 1 мл полученного
раствора будет содержаться 100 тыс. Е Д антибиотика.
30 «Половинное разведение»такое разведение, при котором в 1 мл раствора
будет сдержаться 200 тыс. ЕД антибиотика.
объёминфузории(мл)
время(час)
×
Скорость инфузии в каплях/мин.
кол−вокапель,дозируемоесистемой(кап
мл)
60мин
Вычисление площадей, объемов тел
Трубчатая кость имеет форму цилиндра, сердца мышечный орган
конусовидной форму, следовательно для вычисления площади поверхности и
объема можно воспользоваться соответствующими геометрическими
формулами.
Цилиндр:
Площадь боковой поверхности: Sбок=2 π Rh
Площадь полной поверхности: S полн.пов. = 2 πRh + 2 π R2
Объём V = π R2h
Конус
Площадь боковой поверхности: Sбок = π Rl
Площадь полной поверхности: : S полн.пов. = π Rl + π R2
Объём: V=
1
3 Sh =
1
3 π R2 h =
1
12
π d2 h
Газообмен в лёгких
Жизненная емкость лёгких ( ЖЕЛ) – это объём воздуха, выдохнутого из
лёгких после максимального вдоха при максимальном выдохе:
ЖЕЛ = ДО = РОвд + РОвыд
ДО – дыхательный объём (0,5 л)
Ровд – резервный объём вдоха ( 1,5 л )
РОвыд – резервный объём выдоха (1,5 л )
ЖЕЛ составляет у мужчин 3,5 – 5,0 л, у женщин – 3,04,0 л
Количество характеристикой лёгочной вентиляции служит минутный объём
дыхания ( МОД ) – объём воздуха, проходящий через лёгкие за 1 минуту. При
относительном покое взрослый человек совершает примерно 16 дыхательных
движений в 1 минуту, а объём выдыхаемого воздуха – около 500 мл.
Минутный объём дыхания (МОД):
31 МОД = ЧД ⋅ ДО
ЧД – частота дыхания в минуту
ДО – дыхательный объём воздуха
Содержание кислорода и углекислого газа во вдыхаемом/выдыхаемом
воздухе:
Кислород
Углекислый газ
Во вдыхаемом воздухе
20,97%
0,03%
Во выдыхаемом воздухе
16%
4%
Предполагаемая масса плода считается по формуле Жордания
Масса плода = Окружность живота × Высота стояния дна матки
Оценки индивидуального здоровья
Идеальная масса тела человека
1Способ:
ИМмужчин =(рост100) – (рост100) ⋅ 0,1
ИМженщин=(рост100) – (рост100) ⋅ 0,15
2 Способ
Индекс КЕТЛЕ (ИНДЕКС МАССЫ ТЕЛА)
ИМТ=
Тип телосложения
Дефицит массы тела
Нормальное
Избыточное питание
Ожирение 1 степени
массатела(кг)
рост²(м²)
Индекс массы тела
< 20
2024,9
2529,9
3034,9
32 Ожирение 2 степени
Ожирение 3 степени
3539
>39
Если реальная масса тела пациента превышает нормальную, необходимо
рассчитать на сколько процентов, чтобы определить степень ожирения.
Определение типа телосложения и суточной потребности в энергии
Тип телосложения
Худой
% отклонения массы тела
от идеальной
Дефицит 5% и более
Нормальное
Избыток 10%
Ожирение1,2 степени
Избыток 1149%
Ожирение 3 степени
Избыток 50% и более
Суточная потребность в энергии
(в ккал/кг массы тела)
25
20
17
15
Расчёт необходимой энергии с учётом энергозатрат на трудовую
деятельность в течение одних суток
Группа
Характер трудовой деятельности
Общее количество энергии необходимой в
сутки (ккал)
1
2
3
4
5
Очень лёгкая
Лёгкая
Среднетяжёлая
Тяжёлая
Очень тяжёлая
1
6 A
1
3 A
1
2 A
2
3 A
A+
A+
A+
A+
2A
Вопросы и задания для подготовки к занятию
1. Формулы для расчета прибавки роста и массы детей.
33 2. Формула для расчета питания (объемный способ)
3. Формула для расчета требуемого количества препарата.
4. Формула для подсчета скорости внутривенного введения лекарств в
кап/мин.
5. «Полное» и «половинное» разведение антибиотиков.
6. Формулы расчета идеальной массы тела, индекса массы тела. Система
оценки типа телосложения.
Практические задачи
Математические методы в педиатрии
1. Рассчитайте рост ребенка в 5 месяцев, если при рождении он имел рост
50см.
2. Рассчитайте рост ребенка в 8 месяцев, если при рождении он имел рост
53см.
3. Рассчитайте рост ребенка в 2 года.
4. Рассчитайте прибавку роста ребенка с 10 месяцев до 2 лет, если при
рождении он имел рост 48 см.
5. Рассчитайте прибавку роста ребенка с 4х до 7ти лет.
6. При рождении вес ребенка был 2 кг 800 г. Каким будет его вес к 6 меся
цам?
7. Рассчитайте долженствующий вес ребенка в 9 месяцев, если он родился
весом 3400 г, а ежемесячно он набирал в весе согласно табличным данным.
8. До 4 месяцев ребенок, родившийся с весом 3,2 кг, прибавлял в весе
согласно табличным данным, а за 4й, 5й месяцы набирал всего по 600 г.
Какой вес имел ребенок в 5 месяцев?
9. За первые 3 месяца жизни ребенок набрал 2,1 кг. Сколько весил ребенок в 7
месяцев, если он родился с весом 2,9 кг и за последние месяцы жизни
прибавил в весе среднестатистическое значение?
10. Сколько весит ребенок в 11 месяцев жизни, родившийся с весом 3кг 200г,
если известно, что за последние 5 месяцев он набрал в весе 2,2 кг, а остальные
месяцы набирал в весе согласно таблице?
11. Рассчитайте долженствующую массу тела ребенка в 14 лет.
34 12. Какое количество молока в сутки должен получать 2х месячный ребенок
весом 4,7 кг. Произвести расчет калорийным методом.
13. Ребёнок в возрасте 2 месяца имеет массу тела 4 кг. Какой объём пищи
потребуется ему в сутки, если 1 литр женского молока содержит 700 ккал?
14. Рассчитайте количество молока, необходимое на сутки, по формуле
Финкельштейна для доношенного 7дневнего ребенка массой 3400 г.
Определите объем молока для каждого кормления (при 7разовом режиме).
15. Рассчитайте количество молока, необходимое на сутки ребенку 3 месяца
жизни, массой 4800 г, калорийным методом.
Разведение антибиотиков
16 Врач назначил ребенку 400 тыс. ЕД пенициллина при полном разведении.
Во флаконе 600 тыс. ЕД пенициллина. Сколько мл растворителя требуется
для разведения и сколько мл раствора пенициллина в шприц для инъекций?
17. На одну инъекцию требуется 300 000 ЕД пенициллина. Имеется: во
флаконе 500 000 ЕД. Сколько мл новокаина нужно брать для разведения и
сколько мл раствора в шприц для инъекций: а) при полном разведении; б) при
половинном разведении?
18. На одну инъекцию требуется 500 000 ЕД антибиотика. Имеется: во
флаконе 1 000 000 ЕД антибиотика. Сколько мл стерильной воды нужно брать
для разведения и сколько мл раствора в шприц для инъекций: а) при полном
разведении; б) при половинном разведении?
Вычисление площадей и объемов тел
19. Вычислить объем сердца взрослого человека, если его длина h = 14 см, а
поперечный разрез d = 9 см.
20. Трубчатая кость имеет длину h = 20 см, диаметр d = 3 см. Вычислить
объем кости и площадь ее боковой поверхности.
21. Вычислить объем сердца взрослого человека, если его длина h = 14 см, а
поперечный разрез d = 10 см.
22. Вычислить объем сердца взрослого человека, если h =15 см, d = 8 см.
23. Кость голени человека имеет длину h = 38 см., ширину d = 5 см. Вы
числить объем и площадь боковой поверхности кости.
24. Трахея имеет форму трубки длиной h = 8 см., диаметром d = 1,5 см.
Вычислить максимальный объем трахеи.
35 25. Вычислить объем спинномозговой жидкости в спинномозговом канале,
если его длина h = 40 см., диаметр d = 1,4 см.
Газообмен легких
26. Человек при спокойном дыхании делает 16 дыхательных движений в
минуту. При физической нагрузке количество дыхательных движений
увеличивается на 50%. Сколько углекислого газа при физической нагрузке
выдохнул человек за 4 минуты?
27. В течение 1 минуты человек делает 16 дыхательных движений, при этом в
легкие поступает за 1 вдох 1500 см3 воздуха. Какова минутная вентиляция
легких?
28. Рассчитайте долженствующую жизненную емкость легких ребенка 15 лет,
если дыхательный объем составляет 400 мл, резервный объем вдоха – 1,4 л,
резервный объем вдоха – 900 мл.
29. Рассчитайте долженствующий минутный объем дыхания ребенка 14 лет,
если дыхательный объем составляет 400 мл, частота дыхания – 19 в минуту.
Математические методы в акушерстве
30. Окружность живота беременной 100 см, высота стояния дна матки 34 см.
Рассчитать предполагаемую массу плода по формуле Жордания.
31. Окружность живота беременной 110 см, высота стояния дна матки 28 см.
Рассчитать предполагаемую массу плода по формуле Жордания.
32. Окружность живота беременной 95 см, высота стояния дна матки 35 см.
Рассчитать предполагаемую массу плода по формуле Жордания.
33. Вес четырёхмесячного плода равен 120 г, а вес семимесячного плода –
1100 г. Сколько процентов вес четырехмесячного плода составляет от веса
семимесячного плода?
36 Тест № 1 по теме «Математическая статистика статистика. Расчет
выборочных характеристик.»
1. Для того, чтобы таблица задавала закон распределения случайной
xi 5
pi 0.
2
11
p3 0.
1
9
7
0.
3
величины, значение должно быть равно :
1) 1;
2) 0,3;
3) 0,1;
4) 0,4.
37 2. В таблице задания 1 строка xi содержит:
1) значения вариант;
2) частоты встречаемости;
3) относительные частоты встречаемости;
4) выборочные характеристики .
3. Объем выборки, представленной статистическим распределением,
составляет :
xi 1 2 3 4
ni 2 4 6 3
1) 10;
2) 15;
3) 40;
4) 35
4. В таблице задания 3 модой является варианта
1) 1;
2) 2;
3) 3;
4) 4.
5.Установите соответствие:
Объем выборки Медианой является
1)45 а) варианта с порядковым номером 22
2) 46 б) варианта с порядковым номером 23
3) 43 в) полусумма 23 и 24
4) 44 г) полусумма 22 и 23
6. Выборочная характеристика, расчитываемая как среднее арифметическое
выборки, называется:
1) математическим ожиданием;
2) дисперсией;
3) коэффициентом вариации;
4) средним квадратическим отклонением.
7.Для сравнения разнородных величин применяется выборочная
характеристика
1) математическое ожидание;
2) дисперсия;
38 3) коэффициент вариации;
4) среднее квадратическое отклонение
8. Графическое представление статистического распределения называется
1) полигоном частот;
2) гистограммой распределения;
3) таблицей;
4) диаграммой.
9. Коэффициент вариации, рассчитанный для показателя длительности
лечения от пневмонии в городе N. составил 5%, что говорит о
1) сильном разнообразии длительности лечения;
2) слабом разнообразии длительности лечения;
3) среднем разнообразии длительности лечения;
4) невозможности характеристики данного показателя
10. В целях исследования показателя уровня гемоглобина в крови перед
началом лечения при железодефицитной анемии, наблюдению подлежали 150
человек. Для анализа полученных данных строится сгруппированный
вариационный ряд с количеством групп
1) 67
2) 810
3) 1112
4) 1317
«Медицинская статистика. Медико демографические показатели»
Тест №2 по теме
1. Частоту явления в данной среде характеризует коэффициент:
1) интенсивный ;
2) экстенсивный ;
3) наглядности ;
4) соотношения.
2. Доля заболеваний дифтерией в общем числе инфекционных болезней
является показателем
1) наглядности ;
2) соотношения ;
39 3) экстенсивный ;
4) интенсивный .
3. К показателям экстенсивности относится
1) средняя продолжительность жизни;
2) смертность населения ;
3) доля девочек среди новорожденных ;
4) динамика рождаемости за 10 лет .
4. Число дней нетрудоспособности на 100 работающих является показателем
1) наглядности ;
2) соотношения;
3) экстенсивным;
4) интенсивным.
5. Показатель «смертность детей возрастной группы 1014 лет» является:
1) экстенсивным;
2) интенсивным;
3) соотношения;
4) наглядности .
6. Экстенсивные, интенсивные коэффициенты, коэффициенты соотношения и
наглядности являются :
1) абсолютными показателями в санитарной статистике ;
2) относительными показателями в санитарной статистике;
3) показателями деятельности ФАП ;
4) медикодемографическими показателями.
7. В городе проживает 10 000 человек. В предыдущем году родилось 80 детей.
Показатель рождаемости на 1000 населения равен
1) 125‰
2) 12,5‰
3) 80‰
4) 8‰
8. Население города Н. 100000 человек. В течение года умерло 1400 человек.
Коэффициент смертности равен
1) 14%
2) 14‰
3) 7,1‰
4) 1,4‰
9. Население города А. 15000 человек, в том числе женщин – 7800 человек.
Доля женщин равна
40 1) 19,2%
2) 78%
3) 52%
4) 48%
10. За месяц зарегистрировано 100 заболеваний, из них 20 случаев травмы.
Удельный вес травм за месяц в структуре заболеваемости составил
1) 20%
2) 2%
3) 5%
4) 50%
Эталоны ответов
Тема 1 « Математическая статистика. расчет выборных характеристик»
В1
1. 9 %0 ; 2.8 %0 очень низкий ; 3. 20 %0 , очень средний 4. 17,4 %0 , высокий.
5. а)20 %0 средний; б) 6 % низкий .
В2
1. 45,9 %; 2. a) 55,07%; б) 44,93 %. 3. а) 18 %0 средний б) 8 %0 низкий в) 6,8 %0
низкий г) 3,2 %0 низкий 4. от 0 до года: 5,56 %;
Тест № 1
1. 4
2. 1
3. 2
4. 3
41 5. 1б, 2в, 3а, 4г
6. 1
7. 3
8. 1
9. 2
10. 4
Тест № 2
1 – 1); 2 – 3); 3 – 3); 4 – 4); 5 – 2); 6 – 2); 7 – 4); 8 – 2); 9 – 3); 10 – 1)
Вопросы и задания для подготовки к занятию
1. Задачи медицинской статистики.
2. Понятие интенсивного и экстенсивного показателей. Примеры.
3. Медицинская демография, ее основные разделы.
4. Понятие и формулы расчета показателей: рождаемости, смертности,
естественного прироста, детская и младенческая смертность. Оценка
показателей.
5. Возрастная структура населения, определение типа населения.
6. Показатели медицинской деятельности: число обращений на 1 жителя в
год, нагрузка на приеме в день, нагрузка на приеме в час, число посещений на
дому в день, удельный вес посещений на дому, среднее число патронажных
посещений на дому к детям до 3 лет, среднее число пролеченных больных на
одну должность врача (среднего медперсонала)
42 7. Показатели деятельности отделения стационара: оборот койки, средняя
длительность пребывания больного на койке, обеспеченность населения боль
ничными койками; частота госпитализации.
Список использованной литературы
1.Виноградов, Ю.Н. Математика и информатика: Учебник для студ. учрежде
ний сред. проф. образования/Ю.Н. Виноградов, А.И. Гомола, В.И. Потапов,
Е.В. Соколова. – 3е изд., стер. – М.: Издательский центр «Академия», 2010. –
272 с.
2. Омельченко В.П. Практические задания по высшей математике:
Учеб.пособие/ В.П. Омельченко, Э.В.Курбатова. – Ростов н/Д: Феникс, 2010. –
350 с.
3. Омельченко В.П. Математика: Учеб.пособие/ В.П. Омельченко,
Э.В.Курбатова. – Ростов н/Д: Феникс, 2011. – 380 с.
4. Филимонова, Е.В. Математика/Е.В. Филимонова. РостовнаДону Феникс,
2003, 384
43
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Пособие по математике
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.