Филиал бюджетного профессионального образовательного учреждения Чувашской Республики
«Чебоксарский медицинский колледж»
Министерства здравоохранения Чувашской Республики в городе Канаш
РАССМОТРЕНО и ОДОБРЕНО на заседании ЦМК ОГСЭ Протокол № ____ «____» _______________ 20 ___ г. Председатель ЦМК ____________Л.М Иванова |
утверждено Зав. филиалом БПОУ «ЧМК» МЗ Чувашии в г. Канаш ____________ Н.В. Ксенофонтова |
Методическая разработка теоретического занятия
Построение графиков функции с помощью производной
учебная дисциплина ОБД 07 Математика
специальность 34.02.01Сестринское дело
(базовая подготовка)
Канаш, 2025
Составитель: Семенова А.М., преподаватель высшей квалификационной категории филиала БПОУ ЧР «Чебоксарский медицинский колледж» Министерства здравоохранения Чувашии в г. Канаш
|
Рецензент: Иванова Л.М., преподаватель, высшей квалификационной категории филиала БПОУ ЧР «Чебоксарский медицинский колледж» Министерства здравоохранения Чувашии в г. Канаш
|
Аннотация
Данная методическая разработка по теме «Построение графика функции с помощью производной » является уроком изучения нового материала. Урок построен так, чтобы обучающиеся, опираясь на ранее полученные знания, могли построить график функции. Материал урока направлен на изучение свойств возрастания и убывания функции, соответствие возрастания и убывания функции знаку производной.
Создание проблемных ситуаций на уроках математики повышает интерес к предмету, вносит разнообразие и эмоциональную окраску в учебную работу, снимает утомление, развивает внимание, сообразительность.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. методический блок
1.1. Учебно-методическая карта
Формы деятельности
1.2. Технологическая карта
2. Информационный блок
2.1. План лекции
2.2 Текст лекции
2.3. Глоссарий
Данная методическая разработка по теме «Построение графика функции с помощью производной» является уроком изучения нового материала. Урок построен так, чтобы обучающиеся, опираясь на ранее полученные знания, могли построить график функции. Материал урока направлен на развитие логического мышления, алгоритмической культуры, интуиции, навыков исследовательской деятельности, творческих способностей обучающихся. Структура урока: постановка цели и задач урока; повторение умений и навыков, являющихся опорой для восприятия новой темы; проведение проверочных упражнений (устная работа). Нахождение промежутков монотонности функции, определение алгоритма нахождения промежутков возрастания и убывания функции.
Решение задачи на нахождения промежутков возрастания и убывания функции
Введения понятия монотонности функции. Упражнения на
закрепление данного алгоритма; тренировочные упражнения по образу и подобию в
виде самостоятельной работы; самоконтроль обучающихся.
Создание проблемных ситуаций на уроках математики повышает
интерес к предмету, вносит разнообразие и эмоциональную окраску
в учебную работу, снимает утомление, развивает внимание,
сообразительность.
Тема занятия |
Построение графика функции с помощью производной. |
||||||
Учебная дисциплина |
БД.04 Математика |
||||||
Специальность |
34.02.01 Сестринское дело (базовая подготовка) |
||||||
Курс |
I |
||||||
Группа |
9М-11-20, 9М-12-20, 9М-13-20,9М-14-20, 9М-15-20. |
||||||
Место проведения |
Кабинет № 5 |
||||||
Продолжительность занятия |
90 мин. |
||||||
Характеристика занятия |
Вид |
Вид занятия Лекция текущая, обзорная.
|
|||||
Тип |
Типы учебных занятий урок изучения нового материала; комбинированный урок
|
||||||
Форма |
Изложение, рассказ, объяснение с демонстрацией наглядных пособий. Формы деятельностиФронтальная.
|
||||||
Технологии обучения |
Традиционная (репродуктивная) технология обучения Технология развивающего обучения
|
||||||
Методы обучения |
Метод Репродуктивный: упражнения, действия по алгоритму. - практические (упражнение, тренинг, опыты, самостоятельная работа по алгоритму). Интерактивные методы – практическая отработка осваиваемых знаний, умений, навыков на уровне компетенций
|
||||||
Средства обучения |
1.По характеру воздействия на обучаемых: ИКТ - презентации; 2.По степени сложности: простые: учебники, печатные пособия.
|
||||||
Методическая цель |
Методическая цель - отрабатывать методику контроля результатов выполнения письменных упражнений. - реализовывать индивидуальный дифференцированный подход в процессе выполнения обучающимися заданий для самостоятельной работы; |
||||||
Цели и задачи занятия |
Воспитательная |
Формулировать интеллектуальных, нравственных, эмоционально-волевых качеств у обучающихся.
|
Воспитывать положительное отношение к приобретению новых знаний; Воспитывать ответственность за свои действия и поступки; Вызвать заинтересованность новым для студентов подходом изучения математики. Воспитывать интерес к математике путём введения разных видов закрепления материала: устной работой, работой с учебником, работой у доски, ответами на вопросы и умением делать самоанализ, самостоятельной работой; стимулированием и поощрением деятельности учащихся.
|
||||
Образовательная |
Знать: , алгоритм нахождения промежутков возрастания и убывания функции y = f(x).. Уметь решать задачи с помощью алгоритмов и методов; Уметь логически и полно выстраивать ответ. Систематизировать знания о решения неравенств методом интервалов. |
Умение находить промежутки монотонности функции, определение алгоритма нахождения промежутков возрастания и убывания функции, Решение задачи на нахождения промежутков возрастания и убывания функции и построение графика функции.
|
|||||
Развивающая |
Развитие речи, мышления, сенсорной восприятие внешнего мира через органы чувств сферы;
|
Формировать навыки познавательного мышления. Продолжить развитие умения выделять главное. Продолжить развитие умения устанавливать причинно-следственные связи. Развивать
навыки и умения, в выполнении заданий по теме, умение работать в группе и
самостоятельно. Развивать логическое мышление, правильную и грамотную
математическую речь, развитие самостоятельности и уверенности в своих знаниях
и умениях при выполнении разных видов работ. |
|||||
Планируемый результат |
Уметь |
Знать: алгоритм построения графиков функции. Уметь: строить графики функции с помощью алгоритмов и методов; Уметь логически и полно выстраивать ответ. |
|||||
Знать |
Алгоритм построения графиков функции. Определение промежутков монотонности функции, алгоритм нахождения промежутков возрастания и убывания функции y = f(x). |
||||||
Формирование компетенций у обучающихся |
Общие (ОК)
|
Л1. Сформированность представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, идеях и методах математики; Л5. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; Л8. Отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;
|
|||||
Профессиональные (ПК) |
П1. Сформированность представлений о математике как части мировой культуры и месте математики в современной цивилизации, способах описания явлений реального мира на математическом языке; П4. Владение стандартными приемами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств; |
||||||
Межпредметные связи |
Входящие |
История |
Монотонность функции. Экстремумы функции. |
||||
Литература |
|
||||||
|
|
||||||
Выходящие |
Геометрия |
Парабола. Гипербола. |
|||||
|
|
||||||
|
|
||||||
Внутрипредметные |
Алгебра, геометрия |
||||||
Криволинейная трапеция и интеграл. |
|||||||
Оснащение занятия |
Методическое |
Методическая разработка занятия. |
|||||
Материально-техническое |
Ручка, карандаш, тетрадь, линейка. |
||||||
Информационное |
Компьютер, интерактивная доска. |
||||||
Список литературы |
Основная |
1.Алимов, Ш. А. Алгебра и начала математического анализа (базовый и углубленный уровни)10—11 классы / Ш.А. Алимов — М., 2018. – с.455. 2.Колягин, Ю.М. Математика: алгебра и начала математического анализа. Алгебра и начала математического анализа (базовый и углубленный уровни). 11 класс / М. В Ткачева., Н. Е Федерова. — М., 2018. - 384 с. |
|||||
Дополнительная |
1 Александров А.Д., Геометрия / А.Л.Вернер, В.И. Рыжик (базовый и профильный уровни). 10—11 кл. – 2017. – 344 с. 2. Богомолов, И.Д. Математика: учебник / И.Д. Богомолов. – М., 2018. - 384 с.
|
||||||
Интернет-ресурсы |
1. Калашникова В.А. Методическое пособие: «Конспекты лекций по математике» [Электронный ресурс] /В.А. Калашникова. 2. Яковлев Г.Н. Алгебра и начала анализа (Математика для техникумов) [Электронный учебник] /Г.Н Яковлев. - Режим доступа: http://lib.mexmat.ru/books/78472. 3.www. fcior. edu. ru 4.www. school-collection. edu.
|
||||||
Структура комбинированного урока
Деятельность преподавателя |
Деятельность обучающихся |
Методическое обоснование |
Формируемые ОК и ПК |
|
1. Организационный этап -5 мин. |
||||
Проверяет готовность обучающихся к занятию. дает положительный эмоциональный настрой, организует, проверяет готовность уч-ся к уроку |
Готовятся к началу занятия. |
Включение обучающихся в деятельность на личностно значимом уровне. |
ОК 1, ОК 4. П1. |
|
2. Этап всесторонней проверки домашнего задания - 10мин. |
||||
Выявляет правильность и осознанность выполнения всеми обучающимися домашнего задания; устранить в ходе проверки обнаруженные пробелы в знаниях. |
По очереди комментируют свои решения. Приводят примеры. Пишут под диктовку.
|
Повторение изученного материала, необходимого для открытия нового знания, и выявление затруднений в индивидуальной деятельности каждого обучающегося. |
ОК1, ПК 1, ПК4 |
|
3. Постановка цели и задач занятия. Мотивация учебной деятельности обучающихся - 5 мин. |
||||
Озвучивает тему урока и цель, уточняет понимание обучающегося поставленных целей урока. Эмоциональный настрой и готовность преподавателя на урок.
|
Эмоционально настраиваются и готовятся обучающихся на урок. Ставят цели, формулируют тему урока. |
Обсуждение затруднений; проговаривание цели урока в виде вопроса, на который предстоит ответить. Методы, приемы, средства обучения: побуждающий от проблемы диалог, подводящий к теме диалог. |
ОК 1, ОК 4. П1. |
|
4. Актуализация знаний - 30 мин. |
||||
Уточняет понимание обучающимися поставленных целей занятия. Выдвигает проблему. Создает условия, чтобы обучающийся смогли систематизировать знания о множестве действительных чисел, имели представление о пределе числовой последовательности
|
Под диктовку, все выполняют задание, а один проговаривает вслух.
|
Создание проблемной ситуации. Уч-ся- фиксируют индивидуальные затруднения . Создание условия, чтобы обучающийся смогли систематизировать знания о возрастания и убывания функции. |
ОК 1, ОК 4. П1. |
|
5. Первичное усвоение новых знаний - 10 мин. |
||||
Создаёт эмоциональный настрой на усвоение новых знаний.
|
Внимательно слушают, записывают под диктовку в тетрадь. |
|
ОК1, ПК 1, ПК4 |
|
6. Первичная проверка понимания - 10 мин. |
||||
Проводит параллель с ранее изученным материалом. Проводит беседу по уточнению и конкретизации первичных знаний;
|
Отвечают на заданные вопросы преподавателем. |
Осознание степени овладения полученными знаниями - каждый для себя должен сделать вывод о том, что он уже умеет. |
ОК1, ПК 1, ПК4 |
|
7. Первичное закрепление - 5 мин. |
||||
Контролирует выполнение работы. Осуществляет: индивидуальный контроль; выборочный контроль. Побуждает к высказыванию своего мнения. Показывает на доске решение, опираясь на алгоритм. |
Записывают решение, остальные решают на местах, потом проверяют друг друга;
|
Тренировка и активизация употребления новых знаний, включение нового в систему Режим работы: устная, письменная, фронтальная, индивидуальная. |
ОК1, ПК 1, ПК4 |
|
8. Контроль усвоения, обсуждение допущенных ошибок и их коррекция (подведение итогов занятия 5 мин |
||||
Отмечает степень вовлеченности обучающихся в работу на занятии. Задает вопросы по обобщению материала. |
Под диктовку, все выполняют задание, а один проговаривает вслух; |
Оценивание работу обучающихся, делая акцент на тех, кто умело взаимодействовал при выполнении заданий |
ОК 1, ОК 4. П1. |
|
9. Информация о домашнем задании, инструктаж по его выполнению 5 мин |
||||
Обсуждение способов решения домашнего задания. Записывает номера заданий на доске.
|
Обобщают полученные знания, делают вывод о выполнении задач урока. |
Информация о домашнем задании, инструктаж по его выполнению
|
ОК 1, ОК 4. П1. |
|
10. Рефлексия (подведение итогов занятия) , 5 мин |
||||
Акцентирует внимание на конечных результатах учебной деятельности обучающихся на занятии.
|
1. Проводят самоанализ: “Чему научились и что нового узнали?”
|
Осознание своей учебной деятельности; самооценка результатов деятельности своей. |
ОК1, ПК 1, ПК4 |
|
№ п/п |
Изучаемые вопросы |
Уровень усвоения |
1. |
Устная работа. Повторение. Проверка домашнего задания. |
1 |
2. |
Объяснение темы «Построение графика функции с помощью производной» |
|
|
1. Алгоритм построения графиков функции. |
|
|
2.Промежутки возрастания и убывания функции |
2 |
|
3.Промежутки монотонности функции. |
2 |
3. |
Закрепление нового материала. |
|
|
3.1 Решение примера 1. |
3 |
|
3.2 Решение примера 2. |
3 |
4 |
Решение упражнений (нечетные пункты) на закрепление темы (№926-930) |
3 |
5. |
Домашнее задание № 926-930(четные). |
3 |
1. Устная работа. Проверка домашнего задания.
Построение графика функции с помощью производной.
Алгебра и начала математического анализа, 11 класс
Построение графиков функций.
Перечень вопросов, рассматриваемых в теме
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2022.
Дополнительная литература:
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2021.
Теоретический материал
Функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка.
Функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка.
Полная схема построения графика функции:
Примеры и разбор решения заданий тренировочного модуля
Пример 1. Постройте график функции у = х3 – 3х + 3, используя краткую схему построения. схему построения.
Решение:
1) D(y) = (-∞; +∞)
2) Функция не
является ни четной, ни нечетной, т. к.
3) Асимптот нет
4) f’(x) = 3x2 – 3, f’(x) = 0 при х = 1, х = -1.
х = 1, х = -1 – стационарные точки.
5) f’(x)>0
при .
Так как в точках х = 1, х = -1 функция непрерывна, то эти точки также
включаются в промежутки возрастания.
f’(x)<0
при .
Так как в точках х = 1, х = -1 функция непрерывна, то эти точки также
включаются в промежутки убывания.
6) Так как в точке х = -1 производная меняет знак с «+» на «-», то х = -1 – точка максимума.
Так как в точке х = 1 производная меняет знак с «-» на «+», то х = 1 – точка минимума.
7) Результаты исследования представим в виде таблицы.
X |
(-∞; -1) |
-1 |
(-1; 1) |
1 |
(1; +∞) |
f’(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
|
5 |
|
1 |
|
max |
min |
8) Координаты некоторых точек:
X |
-2 |
0 |
2 |
f(x) |
1 |
3 |
5 |
9) По полученным данным строим график (рис. 1)
Рисунок 1 – график функции у = х3 – 3х + 3
Пример 2. Постройте график
функции,
используя подробную схему построения. схему построения.
Решение:
1)
2) Функция не
является ни четной, ни нечетной, т. к.
3) х = 1 – вертикальная асимптота
4) ,
f’(x) = 0 при х = 2, х = 0.
х = 2, х = 0 – стационарные точки.
5) f’(x)>0
при .
Так как в точках х = 0, х = 2 функция непрерывна, то эти точки также включаются
в промежутки возрастания.
f’(x)<0
при .
Так как в точках х = 0, х = 2 функция непрерывна, то эти точки также включаются
в промежутки убывания.
Так как в точке х = 0 производная меняет знак с «+» на «-», то х = 0 – точка максимума.
Так как в точке х = 2 производная меняет знак с «-» на «+», то х = 2 – точка минимума.
х = 1 – не является точкой экстремума
6) Найдем интервалы выпуклости функции.
; при
функция
выпукла вверх.
; при
функция
выпукла вниз.
7) Результаты исследования представим в виде таблицы.
X |
(-∞; 0) |
0 |
(0; 1) |
1 |
(1; 2) |
2 |
(2; +∞) |
f’(x) |
+ |
0 |
- |
Не сущ. |
- |
0 |
+ |
f’’(x) |
- |
- |
Не сущ. |
+ |
+ |
||
f(x) |
|
-4 |
|
Не сущ. |
|
0 |
|
max |
min |
8) Координаты некоторых точек:
X |
-1 |
0,5 |
1,5 |
3 |
f(x) |
-4,5 |
-4,5 |
0,5 |
0,5 |
9) По полученным данным строим график (рис. 2)
Рисунок 2 – график
функции
4. Решение номера 926-930(нечетные).
5. Домашнее задание номера 926-930(четные).
Глоссарий по теме
Асимптота графика функции y = f(x) – прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.
Убывание
функции. Функция y=f(x) убывает
на интервале X, если для любых х1 и х2 , из
этого промежутка выполняется неравенство
.
Другими словами – большему значению аргумента соответствует большее значение
функции.
Возрастание
функции. Функция y=f(x) возрастает
на интервале X, если для любых х1и х2, из
этого промежутка выполняется неравенство
.
Другими словами – большему значению аргумента соответствует большее значение
функции.
Выпуклость вверх. Функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка.
Выпуклость вниз. Функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка.
Максимум функции. Значение функции в точке максимума называют максимумом функции.
Минимум функции. Значение функции в точке минимума называют минимумом функции.
Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).
Производная второго порядка (вторая производная). Производная второго порядка есть первая производная от производной первого порядка.
Производную определяют, как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к 0, если такой предел существует.
Точка
максимума функции. Точку х0называют точкой
максимума функции y = f(x), если для всех x из ее
окрестности справедливо неравенство .
Точка
минимума функции. Точку х0 называют точкой
минимума функции y = f(x), если для всех x из ее
окрестности справедливо неравенство .
Точка перегиба. Точки, в которых выпуклость вверх меняется на выпуклость вниз или наоборот, называются точками перегиба.
Точки экстремума функции. Точки минимума и максимума
называют точками экстремума
3. Контролирующий блок
Вариант 1
I.Построить график функции:
1) f(x) = 4 – х2
2) f(x) = 3х2 +2х -3.
3) f(x)= е2x .
II. Найти наибольшее и наименьшее значение функции:
f (x) = 2x3 – 9x2 + 12x – 2 на отрезке [0; 3]
Вариант 2
I. Построить график функции:
1)f(x) = sin 2 x .
2)f(x) = 4х3 +3х2 -1.
4) у = 9 – х2.
II. Найти наибольшее и наименьшее значение функции:
f (x) = x3 – 9x2 + 15x – 3 на отрезке [0; 2]
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.