х
х
-3
1
Желаю удачи в изучении материалаи выполнении заданий!
Линейные неравенства с одной переменной и их решение. Изображение решения линейного неравенства на числовой прямой
8 класс15.03.2023
Цели урока:
ввести понятия «решение неравенства», «равносильные неравенства»;
познакомиться со свойствами равносильности неравенств;
рассмотреть решение линейных неравенств вида ах > b, ax < b;
научиться решать неравенства с одной переменной, опираясь на свойства
равносильности.
Рассмотрим неравенство 5х – 11 > 3
при х = 4 5 • 4 – 11 > 3; 9 > 3 – верно;
при х = 2 5 • 2 – 11 > 3, - 1 > 3 – неверно;
Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство.
Решением неравенства с одной переменной называется значение переменной, которое обращает его в верное числовое неравенство.
Являются ли числа 2; 0,2 решением неравенст
ва: а) 2х – 1 < 4;
б) - 4х + 5 > 3?
Равносильные неравенства
Неравенства, имеющие одни и те же решения, называют равносильными. Неравенства, не имеющие решений, тоже считают равносильными
При решении неравенств используются следующие свойства:
Если из одной части неравенства перенести в другую слагаемое с противоположным знаком, то получится равносильное ему неравенство.
Если обе части неравенства умножить или разделить на одно и то же положительное число, то получится равносильное ему неравенство;
если обе части неравенства умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится равносильное ему неравенство.
Неравенства вида ах > b или ах < b, где а и b – некоторые числа, называют линейными неравенствами с одной переменной.
5х ≤ 15, 3х > 12, - х > 12
Решения неравенств ах > b или ах < b при а = 0.
Пример 1. 0 • х < 48
Пример 2. 0 • х < - 7
Линейное неравенство вида 0 • х < b или 0 • х > b, а значит и соответствующее ему исходное неравенство, либо не имеет решений, либо его решением является любое число.
Ответ: х – любое число.
Ответ: нет решений.
Алгоритм решения неравенств первой степени с одной переменной.
Раскрыть скобки и привести подобные слагаемые.
Сгруппировать слагаемые с переменной в левой части неравенства, а без переменной – в правой части, при переносе меняя знаки.
Привести подобные слагаемые.
Разделить обе части неравенства на коэффициент при переменной, если он не равен нулю.
Изобразить множество решений неравенства на координатной прямой.
Записать ответ в виде числового промежутка.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.