Сведение показательных неравенств к системе рациональных неравенств
Рассмотрим показательное неравенство вида
(3)
Так же, как в предыдущем пункте, - некоторые функции.
И снова вспомним, что традиционное решение такого неравенства приводит к двум случаям. В первом основание степени положительно, но меньше единицы (знак неравенства обращается), во втором случае основание степени больше единицы (знак неравенства сохраняется).
Как и в случае с логарифмическим неравенством, имеется возможность значительно укоротить решение задачи, используя метод рационализации. Этот метод основан на следующей теореме.
Доказательство
Если , то первый множитель третьего неравенства будет отрицателен. При сокращении на него придется изменить знак неравенства на противоположный, тогда получится неравенство
Если , то первый множитель третьего неравенства положителен, сокращаем его без изменения знака неравенства, получаем неравенство
.
© ООО «Знанио»
С вами с 2009 года.