Правила игры
• Команда выбирает категорию
и стоимость задания. На
экране высвечивается
задание, которое необходимо
выполнить.
• Если ответ правильный, то
команда зарабатывает баллы.
• Побеждает та команда,
которая заработала больше
всех баллов.
Точка и
прямая 100
Через любую точку
плоскости
можно провести прямую
Верное
Верное
Своя игра. Задание 13 ОГЭ.
Точка и
прямая 200
Через любые две
различные
точки плоскости
можно провести
прямую.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
Точка и
прямая
300
Через любые три
различные
точки плоскости
можно провести
прямую.
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Точка и
прямая
400
Любые две различные прямые
проходят через одну
общую точку
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Точка и
прямая
500
Через точку, не лежащую
на данной прямой,
можно провести на плоскости
на более одной прямой,
параллельно данной.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
100
Углы
Сумма вертикальных
углов равна 180◦
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Задачки 200
Сумма двух смежных
углов равна 180◦
Верное
Верное
Своя игра. Задание 13 ОГЭ.
300
Углы
Если угол равен
54◦, то
вертикальный
с ним угол равен
34◦
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
400
Углы
Если при пересечении
двух прямых третьей
внутренние накрест
лежащие углы равны,
то прямые
параллельны.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
500
Углы
Внешний угол треугольника
равен сумме двух
его внутренних углов.
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Треугольники 100
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Треугольники 200
Если три угла одного
треугольника
соответственно равны
трем углами другого
треугольника. То такие
треугольники равны
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Треугольники 300
Если гипотенуза и острый
угол одного
прямоугольного
треугольника
соответственно
равны гипотенузе и
острому углу другого
прямоугольного
Верное
Верное
треугольника, то такие
Своя игра. Задание 13 ОГЭ.
Треугольники 400
Любые два равнобедренных
треугольника подобны.
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Треугольники 500
Каждая сторона
треугольника меньше
суммы двух других сторон.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
Окружность 100
Длина окружности
радиуса R равна πR
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Окружность 200
Вписанные углы, опирающиеся
на одну и ту же хорду
окружности, равны
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Окружность 300
Если расстояние между
центрами двух
окружностей больше
суммы их радиусов, то
эти окружности не
пересекаются.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
Окружность 400
Центром окружности,
вписанной в треугольника,
является точка пересечения
его биссектрис.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
Окружность 500
Центром окружности,
вписанной в треугольник,
является точка пересечения
серединных перпендикуляров,
проведенных к его сторонам.
Неверное
Неверное
200
Четырехуголь
ники
Если в
параллелограмме
диагонали равны,
то этот
параллелограмм -
прямоугольник
Верное
Верное
Своя игра. Задание 13 ОГЭ.
Если в четырехугольнике
диагонали равны и
перпендикулярны,
то этот четырехугольник –
четырехуголь
300
ники
квадрат
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
400
Четырехуголь
ники
33
Своя игра. Задание 13 ОГЭ.
500
Четырехуголь
ники
Отношение площадей
подобных фигур равно квадрату
коэффициента подобия.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
100
Всякая
всячина
В треугольнике против
меньшей стороны
лежит меньший угол.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
200
Всякая
всячина
Если две перпендикулярные
прямые пересечены
третьей прямой, то сумма
внутренних односторонних
углов равна 180◦
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
300
Всякая
всячина
Если радиус окружности
равен 7, а расстояние от
Окружности до прямой
центра
равно 5,
то эти прямая и
окружность
Неверное
Неверное
не имеют
общих точек.
Своя игра. Задание 13 ОГЭ.
400
Всякая
всячина
Если три стороны
одного треугольника
соответственно равны
трем сторонам другого
треугольника, то такие
треугольники равны.
Верное
Верное
Своя игра. Задание 13 ОГЭ.
500
Всякая
всячина
Диагональ равнобедренно
трапеции делит её
на два равных треугольника.
Неверное
Неверное
Своя игра. Задание 13 ОГЭ.
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.