Самостоятельная работа
Задачи на тему «Теорема Пифагора»
(вариант 1)
1. В прямоугольник ABCD смежные стороны относятся как 12:5, а его диагональ равна 26 см. Чему равна меньшая сторона прямоугольника?
2. Один из внешних углов прямоугольного треугольника равен 135º, а его гипотенуза - 4√2 см. Чему равны катеты данного треугольника?
3. Диагонали ромба равны 24 см и 18 см. Чему равна сторона ромба?
4. Большая диагональ прямоугольной трапеции равна 25 см, а большее основание – 24 см. Найдите площадь трапеции, если её меньшее основание равно 8 см.
5. Основания равнобедренной трапеции равны 10 см и 26 см, а боковая сторона равна 17 см. Найдите площадь трапеции.
6. В параллелограмме ABCD BD = 2√41 см, AC = 26 см, AD = 16 см. Через точку пересечения диагоналей параллелограмма О проведена прямая, перпендикулярная стороне BC. Найдите отрезки, на которые эта прямая разделила сторону AD.
Задачи на тему «Теорема Пифагора»
(вариант 2)
1. В прямоугольнике ABCD смежные стороны относятся как 3:4, а его диагональ равна 20 см. Чему равна большая сторона прямоугольника?
2. Один из внешних углов прямоугольного треугольника равен 135º, а его гипотенуза - 5√2 см. Чему равны катеты данного треугольника?
3. Диагонали ромба равны 12 см и 16 см. Чему равна сторона ромба?
4. Большая диагональ прямоугольной трапеции равна 17 см, а большее основание – 15см. Найдите площадь трапеции, если её меньшее основание равно 9 см.
5. Основания равнобедренной трапеции равны 10 см и 24 см, а боковая сторона равна 25 см. Найдите площадь трапеции.
6*. Две окружности радиусов 13 см и 15 см пересекаются. Расстояние между их центрами О1 и О2 равно 14 см. Общая хорда этих окружностей АВ пересекает отрезок О1О2 в точке К. Найдите О1К и КО2 (О1 – центр окружности радиуса 13 см).
© ООО «Знанио»
С вами с 2009 года.