Понятие вектора в пространстве
Вектор(направленный отрезок) –
отрезок, для которого указано какой из его концов считается началом, а какой – концом.
Длина вектора – длина отрезка AB.
А
В
M
Коллинеарные векторы
Два ненулевых вектора называются коллинеарными, если они лежат на одной
прямой или параллельных прямых.
Среди коллинеарных различают:
Сонаправленные векторы
Противоположно направленные векторы
Равные векторы
Равные векторы - сонаправленные векторы,
длины которых равны.
От любой точки можно отложить вектор,
равный данному, и притом только один.
Противоположные векторы
Противоположные векторы – противоположно направленные векторы, длины которых равны.
Вектором, противоположным нулевому,
считается нулевой вектор.
Сложение векторов
Правило треугольника
Правило параллелограмма
Правило многоугольника
Правило параллелепипеда
Правило многоугольника
Сумма векторов равна вектору, проведенному
из начала первого в конец последнего(при последовательном откладывании).
B
A
C
D
E
Пример
Правило параллелепипеда
B
А
C
D
A1
B1
C1
D1
Вектор, лежащий на диагонали параллелепипеда, равен сумме векторов, проведенных из той же точки и лежащих на трех измерениях параллелепипеда.
Определение компланарных векторов
Компланарные векторы – векторы, при откладывании которых от одной и той же точки пространства, они будут лежать в одной плоскости.
Пример:
B
А
C
D
A1
B1
C1
D1
О компланарных векторах
Любые два вектора всегда компланарны.
Три вектора, среди которых имеются два коллинеарных, компланарны.
α
если
Задачи на компланарность
Компланарны ли векторы:
а)
б)
2.) Известно, что векторы , и компланарны. Компланарны ли векторы:
а)
б)
Разложение вектора по двум неколлинеарным векторам
Теорема.
Любой вектор можно разложить по двум
данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.
Разложение вектора по трем некомпланарным векторам
Если вектор p представлен в виде
где x, y, z – некоторые числа, то говорят, что вектор
разложен по векторам , и .
Числа x, y, z называются коэффициентами разложения.
Теорема
Любой вектор можно разложить по трем данным некомпланарным векторам, причем коэффициенты разложения определяются единственным образом.
Вектор, проведенный в середину отрезка,
Доказательство
равен полусумме векторов, проведенных из той же точки в его концы.
Вектор, соединяющий середины двух отрезков,
С
A
B
D
M
N
С
A
B
D
M
N
Доказательство
равен полусумме векторов, соединяющих их концы.
Вектор, проведенный в точку пересечения диагоналей параллелограмма,
A
B
C
D
O
M
Доказательство
равен одной четверти суммы векторов, проведенных из этой точки в вершины параллелограмма.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.