Вопрос 1.doc

  • doc
  • 13.05.2020
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Вопрос 1.doc

Вопрос 1.

Архитектура и принципы работы ЭВМ. Представление о программном обеспечении.  Магистрально-модульный принцип построения компьютера.

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между модулями.

Обмен информацией между отдельными устройствами компьютера производится по трем многоразрядным шинам (многопроводным линиям), соединяющим все модули: шине данных, шине адресов и шине управления.
Разрядность шины данных связана с разрядностью процессора (имеются 8-, 16-, 32-, 64-разрядные процессоры).

Данные по шине данных могут передаваться от процессора к какому-либо устройству, либо, наоборот, от устройства к процессору, т. е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины данных можно отнести следующие: запись/чтение данных из оперативной памяти, запись/чтение данных из внешней памяти, чтение данных с устройства ввода, пересылка данных на устройство вывода.

Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для оперативной памяти код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам, т. е. шина адреса является однонаправленной.

Разрядность шины адреса определяет объезд адресуемой процессором памяти. Имеются 16-, 20-, 24- и 32-разрядные шины адреса.
Каждой шине соответствует свое адресное пространство, т. е. максимальный объем адресуемой памяти:

В персональных компьютерах величина адресного пространства процессора и величина фактически установленной оперативной памяти практически всегда различаются.
В первых отечественных персональных компьютерах величина адресного пространства была иногда меньше, чем величина реально установленной в компьютере оперативной памяти. Обеспечение доступа к такой памяти происходило на основе поочередного (так называемого постраничного) подключения дополнительных блоков памяти к адресному пространству.
В современных персональных компьютерах с 32-разрядной шиной адреса величина адресуемой памяти составляет 4 Гб, а величина фактически установленной оперативной памяти значительно меньше и составляет обычно 16 или 32 Мб.
По шине управления передаются сигналы, определяющие характер обмена информацией (ввод/вывод), и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
Аппаратно на системных платах реализуются шины различных типов. В компьютерах РС/286 использовалась шина ISA (Industry Standard Architecture), имевшая 16-разрядную шину данных и 24-разрядную шину адреса. В компьютерах РС/386 и РС/486 используется шина EISA (Extended Industry Standard Architecture), имеющая 32-разрядные шины данных и адреса. В компьютерах PC/ Pentium используется шина PCI (Peripheral Component Interconnect), имеющая 64-разрядную шину данных и 32-разрядную шину адреса.
Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, адаптеров устройств (видеоадаптер, контроллер жестких дисков и т. д.), а на программном уровне обеспечивается загрузкой в оперативную память драйверов устройств, которые обычно входят в состав операционной системы.
Контроллер жестких дисков обычно находится на системной плате. Существуют различные типы контроллеров жестких дисков, которые различаются по количеству подключаемых дисков, скорости обмена информацией, максимальной емкости диска и др. IDE — Integrated Device Electronics EIDE — Enhanced Integrated Device Electronics SCSI — Small Computers System Interface В стандартный набор контроллеров, разъемы которых имеются на* системном блоке компьютера, обычно входят:

— видеоадаптер (с помощью него обычно подключается дисплей);

— последовательный порт СОМ1 (с помощью него обычно подключается мышь);

— последовательный порт COM2 (с помощью него обычно подключается модем);

— параллельный порт (с помощью него обычно подключается принтер);

— контроллер клавиатуры.

Через последовательный порт единовременно может передаваться 1 бит данных в одном направлении, причем данные от процессора к периферийному устройству и в обратную сторону, от периферийного устройства к процессору, передаются по разным проводам. Максимальная дальность передачи составляет обычно несколько десятков метров, а скорость до 115 200 бод. Устройства подключаются к этому порту через стандартный разъем RS-232. Через параллельный порт может передаваться в одном направлении одновременно 8 бит данных. К этому порту устройства подключаются через разъем Centronics. Максимальное удаление принимающего устройства обычно не должно превышать 3 м.
Подключение других периферийных устройств требует установки в компьютер дополнительных адаптеров (плат).

Основные устройства компьютера их функции и взаимосвязь в процессе

работы компьютера.

Несмотря на огромное разнообразие вычислительной техники и ее необычайно быстрое совершенствование, фундаментальные принципы устройства машин во многом остаются неизменными. В частности, начиная с самых первых поколений, любая ЭВМ состоит из следующих основных устройств: процессор, память (внутренняя и внешняя) и устройства ввода и вывода информации. Рассмотрим более подробно назначение каждого из них. Процессор является главным устройством компьютера, в котором собственно и происходит обработка всех видов информации. Другой важной функцией процессора является обеспечение согласованного действия всех узлов, входящих в состав компьютера. Соответственно наиболее важными частями процессора являются арифметико-логическое устройство АЛУ и устройство управления УУ.

Каждый процессор способен выполнять вполне определенный набор универсальных инструкций, называемых чаще всего машинными командами. Каков именно этот набор, определяется устройством конкретного процессора, но он не очень велик и в основном аналогичен для различных процессоров. Работа ЭВМ состоит в выполнении последовательности таких команд, подготовленных в виде программы. Процессор способен организовать считывание очередной команды, ее анализ и выполнение, а также при необходимости принять данные или отправить результаты их обработки на требуемое устройство. Выбрать, какую инструкцию программы исполнять следующей, также должен сам процессор, причем результат этого выбора часто может зависеть от обрабатываемой в данный момент информации.

Хотя внутри процессора всегда имеются специальные ячейки (регистры) для оперативного хранения обрабатываемых данных и некоторой служебной информации, в нем сознательно не предусмотрено место для хранения программы. Для этой важной цели в компьютере служит другое устройство – память. Мы рассмотрим лишь наиболее важные виды компьютерной памяти, поскольку ее ассортимент непрерывно расширяется и пополняется все новыми и новыми типами.

Память в целом предназначена для хранения как данных, так и программ их обработки: согласно фундаментальному принципу фон Неймана, для обоих типов информации используется единое устройство.

Начиная с самых первых ЭВМ, память сразу стали делить на внутреннюю и внешнюю. Исторически это действительно было связано с размещением внутри или вне процессорного шкафа. Однако с уменьшением размеров машин внутрь основного процессорного корпуса удавалось поместить все большее количество устройств, и первоначальный непосредственный смысл данного деления постепенно утратился. Тем не менее, терминология сохранилась.

Под внутренней памятью современного компьютера принято понимать быстродействующую электронную память, расположенную на его системной плате. Сейчас такая память изготавливается на базе самых современных полупроводниковых технологий (раньше использовались магнитные устройства на основе ферритовых сердечников – лишнее свидетельство тому, что конкретная физические принципы значения не имеют). Наиболее существенная часть внутренней памяти называется ОЗУ - оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач. Наверное, каждому пользователю известно, что при выключении питания содержимое ОЗУ полностью теряется. В состав внутренней памяти современного компьютера помимо ОЗУ также входят и некоторые другие разновидности памяти, которые при первом знакомстве можно пропустить. Здесь упомянем только о постоянном запоминающем устройстве (ПЗУ), в котором в частности хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера (для лучшего понимания можно указать на некоторую аналогию между информацией в ПЗУ и “врожденными” безусловными рефлексами у живых существ). Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь же современные технологии позволяют в случае необходимости обновлять его даже не извлекая из компьютерной платы.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние несколько жаргонно пользователи часто именуют винчестерами), а также оптические дисководы (устройства для работы с CD ROM). В конструкции устройств внешней памяти имеются механически движущиеся части, поэтому скорость их работы существенно ниже, чем у полностью электронной внутренней памяти. Тем не менее, внешняя память позволяет сохранить огромные объемы информации с целью последующего использования. Подчеркнем, что информация во внешней памяти прежде всего предназначена для самого компьютера и поэтому хранится в удобной ему форме; человек без использования машины не в состоянии, например, даже отдаленно представить содержимое немаркированной дискеты или диска CD ROM.

Современные программные системы способны объединять внутреннюю и внешнюю память в единое целое, причем так, чтобы наиболее редко используемая информация попадала в более медленно работающую внешнюю память. Такой метод дает возможность очень существенно расширить объем обрабатываемой с помощью компьютера информации.

Если процессор дополнить памятью, то такая система уже может быть работоспособной. Ее существенным недостатком является невозможность узнать что-либо о происходящем внутри такой системы. Для получения информации о результатах, необходимо дополнить компьютер устройствами вывода, которые позволяют представить их в доступной человеческому восприятию форме. Наиболее распространенным устройством вывода является дисплей, способный быстро и оперативно отображать на своем экране как текстовую, так и графическую информацию. Для того чтобы получить копию результатов на бумаге, используют печатающее устройство, или принтер.

Наконец, поскольку пользователю часто требуется вводить в компьютерную систему новую информацию, необходимы еще и устройства ввода. Простейшим устройством ввода является клавиатура. Широкое распространение программ с графическим интерфейсом способствовало популярности другого устройства ввода – манипулятора мышь. Наконец, очень эффективным современным устройством для автоматического ввода информации в компьютер является сканнер, позволяющий не просто преобразовать картинку с листа бумаги в графический компьютерный файл, но и с помощью специального программного обеспечения распознать в прочитанном изображении текст и сохранить его в виде, пригодном для редактирования в обычном текстовом редакторе.

Теперь, когда мы знаем основные устройства компьютера и их функции, осталось выяснить, как они взаимодействуют между собой. Для этого обратимся к функциональной схеме современного компьютера, приведенной на рисунке.


Для связи основных устройств компьютера между собой используется специальная информационная магистраль, обычно называемая инженерами шиной.
Шина состоит из трех частей: шина адреса, на которой устанавливается адрес требуемой ячейки памяти или устройства, с которым будет происходить обмен информацией; шина данных, по которой собственно и будет передана необходимая информация; и, наконец, шина управления, регулирующей этот процесс (например, один из сигналов на этой шине позволяет компьютеру различать между собой адреса памяти и устройств ввода/вывода).
Рассмотрим в качестве примера, как процессор читает содержимое ячейки памяти. Убедившись, что шина в данный момент свободна, процессор помещает на шину адреса требуемый адрес и устанавливает необходимую служебную информацию (операция – чтение, устройство – ОЗУ и т.п.) на шину управления. Теперь ему остается только ожидать ответа от ОЗУ. Последнее, “увидев” на шине обращенный к нему запрос на чтение информации, извлекает содержимое необходимой ячейки и помещает его на шину данных. Разумеется, реальный процесс значительно подробнее, но нас сейчас не интересуют технические детали. Особо отметим, что обмен по шине при определенных условиях и при наличии определенного вспомогательного оборудования может происходить и без непосредственного участия процессора, например, между устройством ввода и внутренней памятью.

Подчеркнем также, что описанная нами функциональная схема на практике может быть значительно сложнее. Современный компьютер может содержать несколько согласованно работающих процессоров, прямые информационные каналы между отдельными устройствами, несколько взаимодействующих магистралей и т.д. Тем не менее, если понимать наиболее общую схему, то разобраться в конкретной компьютерной системе будет уже легче.

Магистральная структура позволяет легко подсоединять к компьютеру именно те внешние устройства, которые нужны для данного пользователя. Благодаря ей удается скомпоновать из стандартных блоков любую индивидуальную конфигурацию компьютера.

Персональные компьютеры (ПК) - это микрокомпьютеры (центральный процессор выполнен в виде микропроцессора) универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком.

ПК относятся к классу малых компьютеров.

Персональный компьютер имеет следующие характеристики: стоимость от нескольких сотен до 5-10 тыс. долларов; наличие внешних ЗУ на магнитных дисках; объём оперативной памяти не менее 4 Мбайт; наличие операционной системы; способность работать с программами на языках высокого уровня; ориентация на пользователя-непрофессионала.

Важными характеристиками являются быстродействие (производительность, тактовая частота) и объём оперативной памяти

Быстродействие (производительность) используется для оценки скорости работы компьютера. Под ним понимается число коротких операций, выполняемых компьютером за одну секунду. Короткая операция - это действие типа сложения над числами. Условное обозначение единицы измерения быстродействия - оп/с (операций в секунду).

В последнее время оценка скорости работы компьютера определяется значением тактовой частоты.(МГц). Эта характеристика определяется генератором тактовой частоты компьютера, т.к. для выполнения каждой операции требуется определённое количество тактов. Например, в компьютере с частотой 100 МГц обеспечивается быстродействие 20 млн оп/с.

Объём (ёмкость) оперативной памяти - максимальное количество хранимой в ней информации. Единицами измерения являются Кбайт, Мбайт, Гбайт, Тбайт.

Основные параметры ПК

Производительность 1-4800 млн оп/с

Тактовая частота 6-2400 МГц

Объём оперативной памяти 4-256 Мбайт

Обьём внешней памяти 0,5- 100 Гбайт

Разрядность 16, 32, 64

Перспективы развития компьютеров и новых информационных технологий.

В последнее время вычислительная техника двигалась в сторону универсализации, результатом чего стало разделение на собственно вычислительную машину и программную оболочку, которая выбиралась исходя из типа решаемой задачи. Как следствие возникло множество программных продуктов, но плохая их совместимость и специализированность по типу задач вызвали потребность в создании мощных универсальных средств. В области персональных компьютеров такие средства уже появились (например: Windows, C++ ). Естественно такие оболочки — оболочки высокого уровня, предъявляют большие требования к вычислительной машине и в значительной степени задействуют ресурсы. В настоящее время эта проблема решается в основном количественно, то есть наращивается память, увеличивается тактовая частота, производительность и т.д. Но с другой стороны развитие следует по пути облегчения работы пользователя, создания интеллектуальных оболочек, и ставит разработчика перед необходимостью решать довольно объёмные задачи. Поэтому “универсальные” удобные средства не могут быть использованы в решении сложных трудоемких задач, а так же задач управления различными процессами в реальном времени, и пользователь находится перед выбором: удобства или дополнительные ресурсы? В сложившихся обстоятельствах эта дилемма может быть разрешена.

Если взглянуть на рынок персональных компьютеров, то легко заметить, что переход от накопления количества к качественному изменению уже начался. Внедряется множество новых аппаратных средств, решающих специальные задачи. Особенно много таких нововведений в области multimedia, где широко, наряду с программным, развивается аппаратное обеспечение, дающее значительное увеличение эффективности при неизменных остальных ресурсах.

И появление мощных широко распространенных программных продуктов, которые:

• доказали свою жизнеспособность, практически вытеснив конкурирующие программы;

• развиваясь, сохраняют преемственность;

• предъявляют всё большие требования к ЭВМ;

а так же гибкость и мобильность современных технологий создали предпосылки для того, чтобы реализовать эти средства комплексно, используя программное обеспечение в синтезе со специальным аппаратным. Для этого, например, может быть создан отдельный процессор с собственной памятью. В результате увеличится производительность машины, высвободятся ресурсы и, наконец, появится возможность создать удобную для пользователя среду, пригодную для решения любых (в том числе и трудоёмких) задач.