Задачи на клетчатой бумаге
Оценка 4.7

Задачи на клетчатой бумаге

Оценка 4.7
docx
26.11.2020
Задачи на клетчатой бумаге
Задачи на клетчатой бумаге Пик.docx

Задачи на клетчатой бумаге. Формула Пика.

Задачи на бумаге в клетку помогают как можно раньше формировать геометрические представления у школьников на разнообразном материале. При решении таких задач возникает ощущение красоты, закона и порядка в природе.

При решении задач на клетчатой бумаге ученикам не понадобится знание основ планиметрии, а будет нужна именно смекалка, геометрическое воображение и достаточно простые геометрические сведения, которые известны всем.

Формула Пика

Наш сюжет будет разворачиваться на обычном листке клетчатой бумаги.[1]

https://pandia.ru/text/78/382/images/image001_132.jpgЛинии, идущие по сторонам клеток, образуют сетку, а вершины клеток – узлы этой сетки. Нарисуем на листе многоугольник с вершинами в узлах (рис. 1) и найдем его площадь. Искать её можно по-разному. Например, можно разрезать многоугольник на достаточно простые фигуры, найти их площадь и сложить.

Но тут нас ждёт много хлопот (попробуйте!). Давайте «схитрим»:

вычислим площадь заштрихованной фигуры, которая «дополняет» наш

Рис. 1

многоугольник до прямоугольника АВСD, и вычтем её из площади прямоугольника. Заштрихованная фигура легко разбивается на прямоугольники и прямоугольные треугольники, и её площадь вычисляется без усилий.

Итак, хотя многоугольник и выглядел достаточно просто, для вычисления его площади нам пришлось потрудиться. А если бы многоугольник выглядел более причудливо?

Оказывается площади многоугольников, вершины которых расположены в узлах сетки, можно вычислять гораздо проще: есть формула, связывающая их площадь с количеством узлов, лежащих внутри и на границе многоугольника. Эта замечательная и простая формула называется формулой Пика.

 

 

https://pandia.ru/text/78/382/images/image002_89.jpgПусть АВСD – прямоугольник с вершинами в узлах и сторонами, идущими по линиям сетки (рис. 2).

Обозначим через В количество узлов, лежащих внутри прямоугольника, а через Г – количество узлов на его границе. Сместим сетку на полклетки вправо и полклетки вниз. Тогда территорию прямоугольника можно «распределить» между узлами следующим образом: каждый из В узлов «контролирует» целую

Рис. 2

клетку смещённой сетки, а каждый из Г узлов – 4 граничных не угловых узла – половину клетки, а каждая из угловых точек – четверть клетки. Поэтому площадь прямоугольника S равна

S = В + https://pandia.ru/text/78/382/images/image003_78.gif + 4 · https://pandia.ru/text/78/382/images/image004_68.gif = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

Итак, для прямоугольников с вершинами в узлах и сторонами, идущими по линиям сетки, мы установили формулу S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

Оказывается, эта формула верна не только для прямоугольников, но и для произвольных многоугольников с вершинами в узлах сетки!

Это и есть формула Пика.

Задача 1. Проверить формулу Пика для многоугольника на рисунке 1.

Решение.

В = 14, Г = 8. По формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

S = 14 + 8/2 – 1 = 17

Ответ: 17 кв. ед.

https://pandia.ru/text/78/382/images/image006_55.jpgМожно убедиться в том, что формула Пика верна для всех рассмотренных примеров.

Оказывается, что если многоугольник можно разрезать на треугольники с вершинами в узлах сетки, то для него верна формула Пика.

Попробуйте вычислить площади многоугольников с рисунка 3, используя формулу Пика. Правда ведь, легко получается!

Рис. 3

Рассмотрим ещё некоторые задачи на клетчатой бумаге с клетками размером 1 см \times1 см

Задача 2.[3]

Найдите площадь прямоугольника АВСD (рис.4).

https://pandia.ru/text/78/382/images/image008_46.jpgРешение. По формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

В = 8, Г = 6

S = 8 + 6/2 – 1 = 10 (см²)

Рис. 4 Ответ: 10 см².

Задача 3. Найдите площадь параллелограмма АВСD (рис.5)

https://pandia.ru/text/78/382/images/image009_43.jpgРешение. По формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

В = 6, Г = 6

S = 6 + 6/2 – 1 = 8 (см²)

Ответ: 8 см².

Рис. 5

Задача 4. Найдите площадь треугольника АВС (рис.6)

https://pandia.ru/text/78/382/images/image010_38.jpgРешение. По формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

В = 6, Г = 5

S = 6 + 5/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Рис. 6

Задача 5. Найдите площадь четырёхугольника АВСD (рис. 7)

https://pandia.ru/text/78/382/images/image011_41.jpgРешение. По формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

В = 5, Г = 7

S = 5 + 7/2 – 1 = 7,5 (см²)

Ответ: 7,5 см².

Рис. 7

Согласитесь, рассмотренные задания аналогичны заданию Вhttps://pandia.ru/text/78/382/images/image012_35.gif из вариантов контрольно-измерительных материалов ЕГЭ по математике.

Например:

pic.105Задача 6.[2] Вhttps://pandia.ru/text/78/382/images/image012_35.gif. На клетчатой бумаге с клетками размером 1 см \times1 см изображен треугольник (рис. 8). Найдите его площадь в квадратных сантиметрах.

Решение. По формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1 .

В = 12, Г = 6

S = 12 + 6/2 – 1 = 14 (см²)

Ответ: 14

Рис. 8

pic.148Задача 7. Вhttps://pandia.ru/text/78/382/images/image012_35.gif. На клетчатой бумаге с клетками размером 1 см \times1 см изображена трапеция (рис. 9). Найдите ее площадь в квадратных сантиметрах.

Решение. Воспользуемся формулой Пика:

В = 12, Г = 17

S = 12 + 17/2 – 1 = 19,5 (см²)

Ответ: 19,5

Рис. 9

Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.

Задача 8.[4] Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м (рис. 10)

https://pandia.ru/text/78/382/images/image015_30.jpgРешение. Найдём Shttps://pandia.ru/text/78/382/images/image016_24.gif площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1

В = 8, Г = 7. Shttps://pandia.ru/text/78/382/images/image016_24.gif = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: м²

Рис. 10

Задача 9. Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м. (рис. 11)

Решение. Найдём Shttps://pandia.ru/text/78/382/images/image016_24.gif площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика: S = В + https://pandia.ru/text/78/382/images/image005_62.gif - 1

В = 7, Г = 4. Shttps://pandia.ru/text/78/382/images/image016_24.gif = 7 + 4/2 – 1 = 8 (см²)

1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: м²

https://pandia.ru/text/78/382/images/image017_26.jpgРис. 11

Получить полный текс


 

Скачано с www.znanio.ru

Задачи на клетчатой бумаге. Формула

Задачи на клетчатой бумаге. Формула

Рис. 2 клетку смещённой сетки, а каждый из

Рис. 2 клетку смещённой сетки, а каждый из

Решение. По формуле Пика: S =

Решение. По формуле Пика: S =

Рис. 7 Согласитесь, рассмотренные задания аналогичны заданию

Рис. 7 Согласитесь, рассмотренные задания аналогичны заданию

В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²) 1 см² - 200² м²;

В = 8, Г = 7. S = 8 + 7/2 – 1 = 10,5 (см²) 1 см² - 200² м²;
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
26.11.2020