Mark Scheme
1. |
|
C |
2. |
QH = 100 J and QC
= 60 J; |
A |
3. |
|
D |
4. |
|
C |
5. |
|
E |
6. |
The heat input for this engine occurs during process DðAðB and the heat exhaust is BðCðD If P0V0 corresponds to temperature T0, the temperatures at points A, B, C and D respectively are 3T0, 6T0, 2T0 and T0. The change in temperature for each process is then AB = +3T0, BC = –4T0, CD = –T0 and DA = +2T0. We also have P0V0 = nRT0 For the isochoric process, where W = 0, Q = DU = 3/2 nRDT DA: Q = 3/2 nR(2T0) = 3nRT0 BC: Q = 3/2 nR(–4T0) = –6nRT0 For the isobaric
processes, where W = –pDV = –nRDT,
AB: Q = 5/2 nR(3T0) = 7.5nRT0 CD: Q = 5/2 nR(–T0) = –2.5nRT0 Putting it all together gives us Qinput = QDA + QAB = 10.5nRT0 and Qexhaust = –8.5nRT0 |
B |
7. |
|
E |
8. |
b. e = W/QH, or QH = W/e = (100 MW)/(0.074) = 1350 MW and QC = QH – W = 1250 MW (note Q may represent heat in Joules or rate in Watts) c. AB is isothermal so DT = 0. It is an
expansion so W is – and Q = –W
|
|
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.