Cyclic processes and their effeciency, Carnot cycle Mark Scheme

  • docx
  • 04.05.2020
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Cyclic processes and their effeciency, Carnot cycle Mark Scheme.docx

Mark Scheme

1.

C

2.

QH = 100 J and QC = 60 J;

A

3.

(use absolute temperatures)

D

4.

C

5.

where TH µ pBVB (the highest temperature) and TC µ pDVD (the lowest temperature) gives eC = (6p0V0 – p0V0)/p0V0

E

6.

The heat input for this engine occurs during process DðAðB and the heat exhaust is BðCðD

If P0V0 corresponds to temperature T0, the temperatures at points A, B, C and D respectively are 3T0, 6T0, 2T0 and T0.  The change in temperature for each process is then AB = +3T0, BC = –4T0, CD = –T0 and DA = +2T0.

We also have P0V0 = nRT0

For the isochoric process, where W = 0, Q = DU = 3/2 nRDT

          DA: Q = 3/2 nR(2T0) = 3nRT0

          BC: Q = 3/2 nR(–4T0) = –6nRT0

For the isobaric processes, where W = –pDV = –nRDT,
          Q =
DU – W = 3/2 nRDT + nRDT = 5/2 nRDT

          AB: Q = 5/2 nR(3T0) = 7.5nRT0

          CD: Q = 5/2 nR(–T0) = –2.5nRT0

Putting it all together gives us Qinput = QDA + QAB = 10.5nRT0 and Qexhaust­ = –8.5nRT0

B

7.

E

8.

(use absolute temperature) gives ec = 0.074

b.   e = W/QH, or QH = W/e = (100 MW)/(0.074) = 1350 MW and QC = QH – W = 1250 MW (note Q may represent heat in Joules or rate in Watts)

c.   AB is isothermal so DT = 0.  It is an expansion so W is – and Q = –W
BC is adiabatic so Q = 0.  Temperature drops so
DT is negative.
CD is isothermal so
DT = 0.  It is a compression so W is + and Q = –W
BC is adiabatic so Q = 0. 
Temperature rises so DT is positive.

         

 

 


 

Посмотрите также