Finite Geometric Series

  • pdf
  • 13.05.2020
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Finite Geometric Series.pdf

Kuta Software - Infinite Algebra 2

Finite Geometric Series

Evaluate the related series of each sequence.

1)  21272432

3)  −26−1854−162

Evaluate each geometric series described.

7

k − 1

5)  4

k = 1

9

i − 1

7)  2

i = 1

n − 1

9) 

n = 1

n − 1

n = 1


©i q2C0D1w2T NKfuFtHah zSeo7fHtswQafrVeg uLoLaCQ.8 a IAblilS hrDixgDhftUsr 8rVelsRe4rQvCeod6.Q T cMYaDdPek OwkiGtFhi 6IYndfkiRnqictOed 6Atlyg3eObdr5a4 k2B.u

Name___________________________________

Date________________  Period____

2)  −15−25125

4)  −2−12−72−432−2592

8

6)  Σ (−6)i − 1

i = 1

9

m − 1

8)  Σ −2

m = 1

n − 1

n  = 1

9

12)  Σ (−2)n − 1

n = 1

-1-

               13)  1 + 2 + 4 + 8...,  n = 6                                         14)  2 − 10 + 50 − 250...,  n = 8

               15)  1 − 4 + 16 − 64...,  n = 9                                   16)  −2 − 6 − 18 − 54...,  n = 9

               17)  1 − 5 + 25 − 125...,  n = 7                                 18)  −3 − 6 − 12 − 24...,  n = 9

               19)  a1 = 4an = 1024r = −2                                     20)  a1 = 4an = 8748r = 3

Determine the number of terms n in each geometric series.

21)  a = −2r = 5S = −62

                              1                                 n

23)  a = −3r = 4S = −4095

                              1                                 n

25)  −4 + 16 − 64 + 256...,  S = 52428

n

©l V2D0z1L29 BKxurtyaF IS1okf7tSwQaMroex MLqL1Ct.l n HAWlYli arsi5gthztYsC QrAeOskeIr5vIeMd4.W 0 1MSafdAeS Twfi7tJhL eIvn8fTi4n9iQtveR fA7lLgfePbDrnak F2f.a

22)  a1 = 3r = −3Sn = −60

24)  a1 = −3r = −2Sn = 63

n

m − 1

    26)  Σ −2 ⋅ 4     = −42

m = 1

-2-

Kuta Software - Infinite Algebra 2

Finite Geometric Series

Evaluate the related series of each sequence.

1)  21272432

518

3)  −26−1854−162

−122

Evaluate each geometric series described.

7

k − 1

5)  4

k = 1

5461

9

i − 1

7)  2

i = 1

511

n − 1

9) 

n = 1

−170

n − 1

n = 1

−59048


©c v2z0T1R2l pKguZtAaw JSJoffetgw1a5rEeU iLALMCz.N 7 iAilelH RrSihgBhttwsh QrqeysMeVrPv3eZdO.0 O qMcapd9e9 owFi9tBh9 AIgn7fXiGnLi8tTeZ sAslfg2e4bRrsaC Y2i.X

Name___________________________________

Date________________  Period____

2)  −15−25125

104

4)  −2−12−72−432−2592

−3110

8

6)  Σ (−6)i − 1

i = 1

−239945

9

m − 1

8)  Σ −2

m  = 1

−511

n − 1

n   = 1

39364

9

12)  Σ (−2)n − 1

n = 1

171

-1-

13)  1 + 2 + 4 + 8...,  n = 6

63

15)  1 − 4 + 16 − 64...,  n = 9

52429

17)  1 − 5 + 25 − 125...,  n = 7

13021

19)  a1 = 4an = 1024r = −2

684

14)  2 − 10 + 50 − 250...,  n = 8

−130208

16)  −2 − 6 − 18 − 54...,  n = 9


−19682

18)  −3 − 6 − 12 − 24...,  n = 9

−1533

20)    a1 = 4an = 8748r = 3

13120


Determine the number of terms n in each geometric series.

21)    a = −2r = 5S = −62     22)  a = 3r = −3S = −60

                              1                                 n                                                                                                                             1                                 n

                             3                                                                                       4

                 23)  a = −3r = 4S = −4095                                      24)  a = −3r = −2S = 63

                              1                                 n                                                                                                                             1                                    n

                             6                                                                                       6

25)  −4 + 16 − 64 + 256...,  S = 52428 n 26)  Σ −2 ⋅ 4 = −42 n                   m − 1

m = 1

8

3

Create your own worksheets like this one with Infinite Algebra 2.  Free trial available at KutaSoftware.com

©J I2T0h1k2d 7K5uptIah fSDo4fgtjwMaDr0eT hLZLRCT.r R GAwlDli or7iQgThJtwss 5rSeQsKebr7vEeTd0.Q K mMxaMduej OwkictThh UIgn1fniuniijtBer vAFlggwesb0rLaE Y25.n       -2-