Kuta Software - Infinite Algebra 2
Evaluate the related series of each sequence.
1) 2, 12, 72, 432
3) −2, 6, −18, 54, −162
Evaluate each geometric series described.
7
k − 1
5) 4
k = 1
9
i − 1
7) 2
i = 1
n − 1
9)
n = 1
n
− 1
n = 1
©i q2C0D1w2T NKfuFtHah zSeo7fHtswQafrVeg uLoLaCQ.8 a IAblilS hrDixgDhftUsr 8rVelsRe4rQvCeod6.Q T cMYaDdPek OwkiGtFhi 6IYndfkiRnqictOed 6Atlyg3eObdr5a4 k2B.u
Name___________________________________
Date________________ Period____
2) −1, 5, −25, 125
4) −2, −12, −72, −432, −2592
8
6) Σ (−6)i − 1
i = 1
9
m − 1
8) Σ −2
m = 1
n
− 1
n = 1
9
12) Σ (−2)n − 1
n = 1
13) 1 + 2 + 4 + 8..., n = 6 14) 2 − 10 + 50 − 250..., n = 8 15) 1 − 4 + 16 − 64..., n = 9 16) −2 − 6 − 18 − 54..., n = 9 17) 1 − 5 + 25 − 125..., n = 7 18) −3 − 6 − 12 − 24..., n = 9 19) a1 = 4, an = 1024, r = −2 20) a1 = 4, an = 8748, r = 3 Determine the number of terms n in each geometric series. |
21) a = −2, r = 5, S = −62
1 n
23) a = −3, r = 4, S = −4095
1 n
25) −4 + 16 − 64 + 256..., S = 52428
n
©l V2D0z1L29 BKxurtyaF IS1okf7tSwQaMroex MLqL1Ct.l n HAWlYli arsi5gthztYsC QrAeOskeIr5vIeMd4.W 0 1MSafdAeS Twfi7tJhL eIvn8fTi4n9iQtveR fA7lLgfePbDrnak F2f.a
22) a1 = 3, r = −3, Sn = −60
24) a1 = −3, r = −2, Sn = 63
n
m − 1
26) Σ −2 ⋅ 4 = −42
m = 1
-2-
Kuta Software - Infinite Algebra 2
Evaluate the related series of each sequence.
1) 2, 12, 72, 432
518
3) −2, 6, −18, 54, −162
−122
Evaluate each geometric series described.
7
k − 1
5) 4
k = 1
5461
9
i − 1
7) 2
i = 1
511
n − 1
9)
n = 1
−170
n
− 1
n = 1
−59048
©c v2z0T1R2l pKguZtAaw JSJoffetgw1a5rEeU iLALMCz.N 7 iAilelH RrSihgBhttwsh QrqeysMeVrPv3eZdO.0 O qMcapd9e9 owFi9tBh9 AIgn7fXiGnLi8tTeZ sAslfg2e4bRrsaC Y2i.X
Name___________________________________
Date________________ Period____
2) −1, 5, −25, 125
104
4) −2, −12, −72, −432, −2592
−3110
8
6) Σ (−6)i − 1
i = 1
−239945
9
m − 1
8) Σ −2
m = 1
−511
n
− 1
n = 1
39364
9
12) Σ (−2)n − 1
n = 1
171
13) 1 + 2 + 4 + 8..., n = 6
63
15) 1 − 4 + 16 − 64..., n = 9
52429
17) 1 − 5 + 25 − 125..., n = 7
13021
19) a1 = 4, an = 1024, r = −2
684
14) 2 − 10 + 50 − 250..., n = 8
−130208
16) −2 − 6 − 18 − 54..., n = 9
−19682
18) −3 − 6 − 12 − 24..., n = 9
−1533
20) a1 = 4, an = 8748, r = 3
13120
Determine the number of terms n in each geometric series.
21) a = −2, r = 5, S = −62 22) a = 3, r = −3, S = −60
1 n 1 n
3 4
23) a = −3, r = 4, S = −4095 24) a = −3, r = −2, S = 63
1 n 1 n
6 6
25) −4 + 16 − 64 + 256..., S = 52428 n 26) Σ −2 ⋅ 4 = −42 n m − 1
m = 1
8
3
Create your own worksheets like
this one with Infinite Algebra 2. Free trial available at
KutaSoftware.com
©J I2T0h1k2d 7K5uptIah fSDo4fgtjwMaDr0eT hLZLRCT.r R GAwlDli or7iQgThJtwss 5rSeQsKebr7vEeTd0.Q K mMxaMduej OwkictThh UIgn1fniuniijtBer vAFlggwesb0rLaE Y25.n -2-
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.