физика

  • docx
  • 14.04.2020
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала ИЗОПРОЦ.docx

Предмет: Физика

Учитель: Казиев Н.Б

Тема: Первый закон термодинамики и его применение к изопроцессам.

Работа и теплота связаны друг с другом. Опыты Джоуля и Роберта Майера показали, что работа и теплота переходят друг в друга в эквивалентных количествах. Однако теплота и работа неравноценны: работа может полностью перейти в теплоту, а теплота полностью перейти в работу не может. Причины этого объясняются началами термодинамики.

I закон термодинамики:

.

Количество теплоты , переданное системе, идет на увеличение её внутренней энергии и совершение системой работы против внешних сил (рис. 2).

Первое начало термодинамики подтверждается как теми опытами, на основании которых установлена эквивалентность между Q и A,так и совпадением выводов из него с наблюдаемыми фактами. Оно является выражением закона сохранения и превращения энергии.

Установление первого начала термодинамики позволило объяснить все неудачи, связанные с попыткой создания машины, которая могла бы совершать работу, не получая энергии извне (перпетуум мобиле, или вечный двигатель первого рода). После формулировки первого закона термодинамики стало ясно, что если система не получает извне тепла или другой энергии, то Q=0 и DU=0, поэтому и A=0 Таким образом, создать вечный двигатель первого рода невозможно. Это утверждение является одной из формулировок первого начала термодинамики.

Работа, совершаемая системой при изменении объема, определяется следующим образом.

Пусть газ заключен в некотором цилиндре (рис. 3); найдем его работу при расширении.

Элементарная работа на пути

,

где - сила, с которой газ давит на поршень.

.

Работа, совершаемая системой при конечном изменении объёма от до , находится интегрированием:

.

Произведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах .

При увеличении объёма насовершаемая газом работа определяется заштрихованной площадью.

Поэтому полная работа, совершаемая при расширении от до , определяется площадью, ограниченной осью абсцисс, кривойи прямымии(рис. 4).

При p=const

.

Как было ранее установлено,

.

1. Изохорный процесс (V=const).

Диаграмма этого процесса в координатах p,V изображается прямой, параллельной оси ординат. Газ при этом не совершает работы, A=0.

.

Вся теплота, сообщаемая газу, идёт на увеличение его внутренней энергии.

.

2. Изобарный процесс (p=const).

,

.

Т.к. p=const, ,.

3.Изотермический процесс (T=const).

Т.к. Т = const, DT=0, DU=0, Q=A,

Адиабатным называется процесс, происходящий в системе без теплообмена с внешней средой.

Близкими к адиабатным являются все быстропротекающие процессы, например, быстрое сжатие или расширение, происходящее так, чтобы система не успела обменятся теплом с внешней средой.

Адиабатные процессы применяются в двигателях внутреннего сгорания (расширение и сжатие горючей смеси в цилиндрах), в холодильных установках и т.п.)

–адиабатное расширение, температура уменьшается.

Работа газа над внешними телами совершается за счет его внутренней энергии. При этом его внутренняя энергия (и температура) уменьшается. Т.о., при адиабатном расширении газ охлаждается.

–адиабатное сжатие, температура растет. Внутренняя энергия увеличивается за счет работы внешних сил над газом.

Уравнение адиабатного процесса или уравнение Пуассона:

,

где – показатель адиабаты или коэффициент Пуассона.

Это же уравнение имеет другие формы записи:

.

Работа, совершаемая газом при адиабатном процессе, выражается формулами:

или .

4.      Тепловые двигатели. Формула Карно.

Тепловой двигатель - это система, совершающая многократно круговой процесс (цикл), при котором за счёт подведённого извне тепла совершается механическая работа. Для этого необходимо рабочему веществу в начале цикла сообщать некоторое количество теплоты Q1, а в конце цикла отнимать количество теплоты Q2.

Принцип действия:

Рабочее тело приводится в контакт с нагревателем и получает от него количество теплоты (рис. 5). При этом температура газа повышается, он расширяется и перемещает поршень, совершая работу . Затем рабочее тело приводится в контакт с холодильником, отдает ему, газ охлаждается и сжимается, перемещая поршень в обратном направлении, что равносильно совершению газом отрицательной работы А2. После установления теплового равновесия с холодильником рабочее тело вновь приводится в контакт с нагревателем; цикл завершен.

Количество получаемого за цикл тепла равно , а отданного. Их разность перешла в полезную работу:

.

Разные тепловые машины, получив одинаковое количество теплоты, могут совершать разную полезную работу. Способность разных тепловых двигателей превращать тепловую энергию в работу характеризуется их коэффициентом полезного действия (КПД).

КПД теплового двигателя называется величина, равная отношению совершаемой за цикл полезной работы ко всему количеству теплоты, полученному от нагревателя:

.

При рассмотрении работы тепловой машины не было оговорено, из каких процессов состоит её цикл: обратимых или необратимых.

Все термодинамические процессы, протекающие в замкнутой системе, подразделяющиеся на обратимые и необратимые.

Термодинамический процесс называется обратимым, если, протекая в обратном направлении, он возвращает систему в исходное состояние без затрат энергии.

(упругая деформация тел, незатухающие колебания).

Все изопроцессы идеального газа являются обратимыми. В противном случае процесс называется необратимым.

Все реальные процессы необратимы, т.к. их нельзя провести в обратном направлении без затраты дополнительной энергии (расширение газа в пустоту, затухающие колебания, взрыв).

В случае необратимых процессов только часть разности перейдет в полезную работу, остальная часть энергии рассеется в окружающем пространстве.

Следовательно, КПД тепловой машины, работающей на обратимых циклах, всегда больше КПД такой же машины, работающей на реальных (необратимых) циклах.

Для практических целей очень важно найти метод расчёта КПД идеальной тепловой машины, работающей на обратимом цикле. Тогда, основываясь на том, что hр<hид, можно будет оценить возможность реальной тепловой машины.

Как было сказано, все изопроцессы являются обратимыми и из них можно построить идеальный цикл. Поскольку каждый изопроцесс характеризуется соответствующей работой, которую с его помощью можно совершить, КПД различных идеальных циклов различны. В термодинамике показывается, что максимальным КПД обладает цикл, составленный из двух изотерм и двух адиабат (рис 6). Этот цикл называется циклом Карно.

Указный выше оптимальный цикл был рассмотрен французским инженером Сади Карно в 1824г. Выбор именно этих изопроцессов обусловлен тем, что при изотермическом процессе вся подведённая системе теплота идёт на совершение работы, а адиабатическое изменение температуры происходит без теплообмена с окружающей средой, т.е. без потерь.

КПД тепловой машины, работающей с идеальным газом по циклу Карно, равен

Таким образом,

Анализ полученного выражения показывает, что чем больше разница между температурами нагревателя и холодильника, тем выше КПД. Это один из путей повышения КПД реальных тепловых двигателей.