Geometric Sequences (1)

  • pdf
  • 13.05.2020
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Geometric Sequences (1).pdf

                  Kuta Software - Infinite Algebra 2                             Name___________________________________

                  Geometric Sequences                                              Date________________  Period____

Determine if the sequence is geometric.  If it is, find the common ratio.

1)  −16−36216, ...

2)  −1148, ...

3)  4163664, ...

4)  −3−15−75−375, ...

5)  −2−4−8−16, ...

6)  1−525−125, ...

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

                                     n − 1                                                                                                                           n − 1

                  7)  a = 3                                                                                               1

                           n                                                                                                                                                             8)  a = 2 ⋅ ( )


                                                                                                                                                   n                      4

                                                   n − 1                                                                                                              n − 1

                 9)  a = −2.5 ⋅ 4                                                               10)  a = −4 ⋅ 3

                           n                                                                                                                                                                                     n

Given the recursive formula for a geometric sequence find the common ratio, the first five terms, and the explicit formula.

                  11)  a = a     ⋅ 2                                                               12)  a = a    ⋅ −3

                              n            n − 1                                                                                                       n            n − 1

                            a = 2                                                                                a = −3

                              1                                                                                                                      1

                  13)  a = a     ⋅ 5                                                               14)  a = a     ⋅ 3

                              n            n − 1                                                                                                       n            n − 1

                            a = 2                                                                                a = −3

                              1                                                                                                                      1

©v J22071a2k QKPu1t5av 0Smo4fFtJwyaErgej NL6LUC2.a 7 AAAlFlh srpiXgUhatrs2 qrdeMsmegrgvxeldk.p f IMoajd4e1 ywniHtghh AIjnSf4iUniiQtOeT GAElLgyeabqrla3 B2Y.5            -1-

Given the first term and the common ratio of a geometric sequence find the first five terms and the explicit formula.

                 15)  a = 0.8r = −5                                                        16)  a = 1r = 2

                              1                                                                                                                      1

Given the first term and the common ratio of a geometric sequence find the recursive formula and the three  terms in the sequence after the last one given.

                 17)  a = −4r = 6                                                           18)  a = 4r = 6

                              1                                                                                                                      1

                 19)  a = 2r = 6                                                             20)  a = −4r = 4

                              1                                                                                                                      1

Given a term in a geometric sequence and the common ratio find the first five terms, the explicit formula, and  the recursive formula.

                 21)  a = 25r = −5                                                         22)  a = 4r = 5


                              4                                                                                                                      1

Given two terms in a geometric sequence find the 8th term and the recursive formula.

                 23)  a = −12  and  a = −6                                               24)  a = 768  and  a = 12

                              4                              5                                                                                      5                             2

                 25)  a = −2  and  a = −512                                             26)  a = 3888  and  a = 108

                              1                           5                                                                                         5                                3

©L E2u0Z172t GKIuhtwaJ 1SooKfqtRwlaorte9 oL6LqC7.c x 4ATlYlv jrhizgThUtRsP 7r6egs6eArSvXepdR.t L wM1aDdHen aw2i8tRhw DI0nafoi9nIiwtzeW aAelRgJekbcrua1 O25.Y         -2-

                  Kuta Software - Infinite Algebra 2                             Name___________________________________

                  Geometric Sequences                                              Date________________  Period____

Determine if the sequence is geometric.  If it is, find the common ratio.

                1)  −16−36216, ...                                                  2)  −1148, ...

                            r = −6                                                                               Not geometric

                 3)  4163664, ...                                                      4)  −3−15−75−375, ...

                            Not geometric                                                                  r = 5

                5)  −2−4−8−16, ...                                                 6)  1−525−125, ...

                            r = 2                                                                                r = −5

Given the explicit formula for a geometric sequence find the first five terms and the 8th term.

n − 1

7)  a = 3

n

First Five Terms: 1392781

a = 2187

8

n − 1

1

8)  an = 2 ⋅ ( )

4

1     1         1          1

               First Five Terms: 2,  ,  ,         , 

2     8         32       128

1 a =

              8     8192

n − 1

9)  a = −2.5 ⋅ 4

n

n − 1

10)  a = −4 ⋅ 3

n

First Five Terms: −4−12−36−108−324

a = −8748

8

First Five Terms: −2.5−10−40−160−640

a = −40960

8

Given the recursive formula for a geometric sequence find the common ratio, the first five terms, and the


explicit formula.


11)  a = a ⋅ 2

                              n            n − 1

a = 2

1

Common Ratio: r = 2

First Five Terms: 2481632

n − 1

Explicit: a = 2 ⋅ 2

n

13)  a = a ⋅ 5 n                    n − 1

a = 2

1

Common Ratio: r = 5

First Five Terms: 210502501250

n − 1

Explicit: a = 2 ⋅ 5

n

©V f250s122q 7K6uRtRa1 JSoovfpt9wraArEeb ALaL9Cm.l T IASlTlU Wr0ilgfhstxsn or0etssecr0vhexdj.1 p nMZajdSeK LwXi1tPhP FInnefNiBnki0t2eU zALllgse3bAruaY l2O.u

12)  an = an − 1 ⋅ −3 a = −3

1

Common Ratio: r = −3

First Five Terms: −39−2781−243

n − 1

Explicit: a = −3 ⋅ (−3)

n

14)  an = an − 1 ⋅ 3 a = −3

1

Common Ratio: r = 3

First Five Terms: −3−9−27−81−243

n − 1

Explicit: a = −3 ⋅ 3

n

-1-


Given the first term and the common ratio of a geometric sequence find the first five terms and the explicit formula.

                 15)  a = 0.8r = −5                                                        16)  a = 1r = 2

                              1                                                                                                                      1

                           First Five Terms: 0.8−420−100500                   First Five Terms: 124816

                                                                              n − 1                                                                                              n − 1

                            Explicit: a = 0.8 ⋅ (−5)                                         Explicit: a = 2

                                                   n                                                                                                                                                                                 n

Given the first term and the common ratio of a geometric sequence find the recursive formula and the three  terms in the sequence after the last one given.

                17)  a1 = −4r = 6                                                          18)  a1 = 4r = 6

                           Next 3 terms: −24−144−864                                    Next 3 terms: 24144864

                           Recursive: an = an − 1 ⋅ 6                                                  Recursive: an = an − 1 ⋅ 6

                                                     a = −4                                                                             a1 = 4

1

                 19)  a1 = 2r = 6                                                            20)  a1 = −4r = 4

                            Next 3 terms: 1272432                                             Next 3 terms: −16−64−256

                           Recursive: an = an − 1 ⋅ 6                                                  Recursive: an = an − 1 ⋅ 4

                                                     a = 2                                                                                a = −4

                                                       1                                                                                                                      1


Given a term in a geometric sequence and the common ratio find the first five terms, the explicit formula, and  the recursive formula.

                21)  a4 = 25r = −5                                                       22)  a1 = 4r = 5

                           First Five Terms: −0.21−525−125                   First Five Terms: 4201005002500

                                                                                 n − 1                                                                                                  n − 1

                           Explicit: a = −0.2 ⋅ (−5)                                       Explicit: an = 4 ⋅ 5

n

                           Recursive: an = an − 1 ⋅ −5                                                Recursive: an = an − 1 ⋅ 5

                                                     a = −0.2                                                                           a = 4

                                                       1                                                                                                                      1

Given two terms in a geometric sequence find the 8th term and the recursive formula.

23)  a4 = −12  and  a5 = −6

3 a = − 8

4

24)  a5 = 768  and  a2 = 12

a = 49152

8

           Recursive: a = a    ⋅ 4

                                                                                                                                                                               n            n − 1

Recursive: a = aa = 3

                                                       n                                                                                         n − 11

a = −96

1

                25)  a1 = −2  and  a5 = −512                                          26)  a5 = 3888  and  a3 = 108

                            a = 32768                                                                       a = 839808

                               8                                                                                                                      8

                           Recursive: an = an − 1 ⋅ −4                                                Recursive: an = an − 1 ⋅ 6

                                                     a = −2                                                                              a = 3

                                                       1                                                                                                                      1

Create your own worksheets like this one with Infinite Algebra 2.  Free trial available at KutaSoftware.com

©T C2Q0q1E2c KK0uFtvai oSRo8fHtzwMaWrTei 1LpLiCE.w T HAslql5 Prii1gVhptJsf Jrqe5sPeKr5vJeudQ.n y dM8aGdzeJ UwxiNtOhO ZIanFfEianyiWtheT bAmlEgxeOb7rraI U2t.9      -2-