ГРАФИК ПРЯМОЙ ПРОПОРЦИОНАЛЬНОСТИ

  • docx
  • 29.12.2021
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала ГРАФИК ПРЯМОЙ ПРОПОРЦИОНАЛЬНОСТИ.docx

График прямой пропорциональности

Цели: определить график прямой пропорциональности как прямую, проходящую через начало координат; выявить расположение прямой в зависимости от знака коэффициента пропорциональности; формировать умение строить график прямой пропорциональности по формуле и выполнять обратное действие – записывать по графику формулу функции.

Ход урока

I. Устная работа.

1. Найдите область определения функции.

а) y = 3x + 2;        б) y = ;     в) y = ;г) y = ;      д) y = x;   е) y = 2x2 + 6x + 1.

2. Является ли функция прямой пропорциональностью:

а) y = 182x;б) y = ;в) y = x;г) y = –17x2;           д) y = ;     е) y = 3x + 11?

3. Функция задана формулой у = . Найдите коэффициент прямой пропорциональности k, если:

а) х = 2; у = 4;      б) x = ; y = –4;в) х = 3; у = ;   г) х = 0; у = 0.

II. Объяснение нового материала.

Начинаем с рассмотрения конкретной функции (см. учебник, с. 66). Можно предложить учащимся лабораторную работу: подобрать функции, заданные формулами:

у = 0,5х;                            у = –0,5х;

у = х;                                 у = –х;

у = 1,5х;                            у = –1,5х;

у = 2х;                               у = –2х;

у = 2,5х;                            у = –2,5х;

у = 3х;                               у = –3х;

у = 3,5х;                            у = –3,5х;

у = 4х;                               у = –4х.

Затем заполнить таблицу значений функции при –4 ≤ х ≤ 4 с шагом 0,5.

выводы:

1) График прямой пропорциональности является прямой, проходящей через начало координат.

2) Если коэффициент пропорциональности k > 0, то график расположен в первой и третьей координатных четвертях.

3) Если коэффициент пропорциональности k < 0, то график расположен во второй и четвертой координатных четвертях.

На основе этих выводов учащиеся выводят простейший алгоритм построения графика прямой пропорциональности:

1-й шаг. Для х1 0 вычислить у1 по формуле у = .

2-й шаг. Отметить  в  координатной  плоскости  точки  с  координатами (0; 0) и (х1; у1).

3-й шаг. Провести прямую через построенные точки.

III. Формирование умений и навыков.

Упражнения, выполняемые на этом уроке, направлены на отработку алгоритма построения графика прямой пропорциональности и нахождения значений функции по графику.

1. № 300, № 302.

№ 302.

Решение:

у = –0,5х

 

Пусть х = 3, тогда у = –0,5 · 3 = –1,5. Проведем прямую, проходящую через начало координат и точку с координатами (3; –1,5).

а) Если х = –2, то у = 1;                          б) у = –1 при х = 2;

    если х = 4, то у = –2;                              у = 0 при х = 0;

    если х = 1, то у = –0,5.                                       у = 2,5 при х = –5.

Если у = –150, то найдем х, решив уравнение:

–0,5х = –150;

х = –150 : (–0,5);

х = 300.

При выполнении этого задания повторяем с учащимися правило нахождения по графику значения функции по данному значению аргумента и наоборот (отмечаем точку на оси абсцисс; проводим прямую, перпендикулярную оси абсцисс, до пересечения с графиком функции; из полученной точки опускаем перпендикуляр на ось ординат и находим соответствующее числовое значение ординаты).

Также на этом примере показываем, что очень важен выбор правильной величины единичного отрезка. Если взять в качестве единицы измерения одну клеточку, то будет очень неудобно строить график, точки будут «слипаться», чертеж будет грязным и нефункциональным.

При больших значениях аргумента или функции (у = –150) удобнее работать с формулой и выполнять действия аналитически (решить уравнение; вычислить по формуле).

2. № 303 (устно).

Выполняем работу по предыдущему чертежу.

3. № 305, № 306.

№ 305.

Решение:

а) у = 1,7х;

б) у = –3,1х;

в) у = 0,9х;

г) у = –2,3х;

д) у = , где k > 0;

е) у = , где k < 0.

После выполнения этого задания обсудить с учащимися, почему график а) расположен в первой четверти выше графика в).

№ 306. Решение:

Все графики являются прямыми, проходящими через начало координат,  значит,  функции  являются  прямыми  пропорциональностями  и  их можно  задать  формулой  у = .  Задача  сводится  к  нахождению  коэффициента k.

Выберем  на  каждом  графике  произвольную  точку  с  целыми  координатами:

I    (2; 6), значит, 6 = k · 2; k = 3; у = 3х;

II   (4; 1), значит, 1 = k · 4; k = 0,25; у = 0,25х;

III (2; –2), значит, –2 = k · 2; k = –1; у = –х;

IV (2; –6), значит, –6 = k · 2; k = –3; у = –3х.

Ответ: у = 3х; у = 0,25х; у = –х; у = –3х.

IV. Проверочная работа.

Вариант 1

1. График функции у = проходит через точку В (–30; 3). Найдите k.

2. Построить графики функций:

а) у = 5х;               б) у = –5х.

В каждом случае указать координаты двух точек графика, лежащих выше оси абсцисс.

Вариант 2

1. График функции у = проходит через точку А (4; –80). Найдите k.

2. Построить графики функций:

а) у = 6х;               б) у = –6х.

В каждом случае указать координаты двух точек графика, лежащих ниже оси абсцисс.

V. Итоги урока.

Домашнее задание: 1. № 301; № 304. № 357.