Классическая вероятность
Оценка 5

Классическая вероятность

Оценка 5
Занимательные материалы
docx
математика
8 кл—11 кл +1
11.03.2024
Классическая вероятность
Решебник по теме "Классическая вероятность"
Решебник классическая вероятность.docx

Задача 1: Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.

Решение: Вероятность набрать верную цифру из десяти равна по условию 1/10. Рассмотрим следующие случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй - верным, вероятность равна 9/10*1/9=1/10 (первый раз набрана неверная цифра, а второй раз верная из оставшихся девяти цифр).
3. первый и второй звонки оказались неверными, а третий - верным, вероятность равна 9/10*8/9*1/8=1/10 (аналогично пункту 2).

Всего получаем P=1/10+1/10+1/10=3/10=0,3 - вероятность того, что ему придется звонить не более чем в три места.

Ответ: 0,3

 

Задача 2: Абонент забыл последние 2 цифры телефонного номера, но помнит, что они различны и образуют двузначное число, меньшее 30. С учетом этого он набирает наугад 2 цифры. Найти вероятность того, что это будут нужные цифры.

Решение: Используем классическое определение вероятности: P=m/n, где m - число исходов, благоприятствующих осуществлению события, а n- число всех равновозможных элементарных исходов. m=1, так как только одно число правильное. Подсчитаем количество всех возможных двузначных чисел с разными цифрами, меньшее 30, которые может набрать абонент:

10

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29

Таких чисел n=18 штук. Тогда искомая вероятность P=1/18=1/18.

Ответ: 1/18.

 

Задача 3. Шесть шаров случайным образом раскладывают в три ящика. Найти вероятность того, что во всех ящиках окажется разное число шаров, при условии, что все ящики не пустые.

Решение: Используем классическое определение вероятности: P=m/n, где m - число исходов, благоприятствующих осуществлению события, а n - число всех равновозможных элементарных исходов.

m=6, так как есть только три случая расположения 6 шаров по 3 ящикам, чтобы во всех ящиках оказалось разное число шаров: (1, 2, 3), (2, 1, 3), (3, 2, 1), (1, 3, 2), (2, 3, 1), (3, 1, 2).

Всего случаев расположения 6 шаров по 3 ящикам, чтобы ни один ящик не остался пустым равно

Тогда искомая вероятность P=6/10=0,6.

Ответ: 0,6.

Задача 4: На шахматную доску случайным образом поставлены две ладьи. Какова вероятность, что они не будут бить одна другую?

Решение: Используем классическое определение вероятности: P=m/n, где m - число исходов, благоприятствующих осуществлению события, а n - число всех равновозможных элементарных исходов.

Число всех способов расставить ладьи равно n=6463=4032 (первую ладью ставим на любую из 64 клеток, а вторую - на любую из оставшихся 63 клеток).

Число способов расставить ладьи так, что они не будут бить одна другую равно m=64 (64−15) =6449=3136 (первую ладью ставим на любую из 64 клеток, вычеркиваем клетки, которые находятся в том же столбце и строке, что и данная ладья, затем вторую ладью ставим на любую из оставшихся после вычеркивания 49 клеток).

Тогда искомая вероятность P=3136/4032=49/63=7/9=0,778.

 Ответ: 7/9.

 

Задача 5. На каждой из пяти одинаковых карточек напечатана одна из следующих букв: "а", "м", "р", "т", "ю". Карточки тщательно перемешаны. Найти вероятность того, что на четырех вынутых по одной карточке можно прочесть слово "юрта".

Решение: Используем классическое определение вероятности: P=m/n, где m - число исходов, благоприятствующих осуществлению события, а n - число всех равновозможных элементарных исходов.

n=5432=120 способов, так как первую карточку (букву) можно вытянуть (выбрать) 5 способами (так как всего карточек пять), вторую - 4 (осталось к этому шагу четыре), третью - 3 и четвертую - 2 способами.

m=1, так как искомая последовательность карточек "ю", потом "р", потом "т", потом "а" только одна.

Получаем вероятность P=1/120.

Ответ: 1/120.

 

Задача 6. Ребенок имеет на руках 5 кубиков с буквами: А, К, К, Л, У. Какова вероятность того, что ребенок соберет из кубиков слово "кукла"?

Решение: Используем формулу классической вероятности: P=m/n, где n - число всех равновозможных элементарных исходов, m- число элементарных исходов, благоприятствующих осуществлению события.

Число различных перестановок из букв А, К, К, Л, У равно

n=5!1!2!1!1!=1234512=60,

из них только одна соответствует слову "кукла" (m=1), поэтому по классическому определению вероятности вероятность того, что ребенок соберет из кубиков слово "кукла" равна P=1/60.
Ответ: 1/60.

 

Задача 7. В пачке 20 перфокарт, помеченных номерами 101, 102, ... , 120 и произвольно расположенных. Перфораторщица наудачу извлекает две карты. Найти вероятность того, что извлечены перфокарты с номерами 101 и 120.

Решение: Найдем вероятность, используя классическое определение вероятности: P = m/n, где m – число исходов, благоприятствующих осуществлению события, а n – число всех элементарных равновозможных исходов.

Число всех различных способов выбрать две карты из 20:

 m =1 - только в одной комбинации (101 и 120) будут вытащены искомые перфокарты. Искомая вероятность P = 1/190 ≈ 0,0053

Ответ: 0,0053.

 

Задача 8. Случайно выбранная кость в игре домино оказалась не дублем. Найти вероятность того, что вторую также взятую наудачу кость домино можно приставить к первой.

Решение: Найдем вероятность, используя классическое определение вероятности: P = m/n, где m – число исходов, благоприятствующих осуществлению события, а n – число всех элементарных равновозможных исходов. n = 27 - число всех оставшихся костей. m = 6+6= 12 , так как первая кость – не дубль, к ней можно приставить 6 костей к одной половине или 6 костей к другой половине. Получаем вероятность P =12/27 ≈ 0,444

Ответ: 0,444.

 

Задача 9. Цифры 1, 2, 3, …, 9, выписанные на отдельные карточки складывают в ящик и тщательно перемешивают. Наугад вынимают одну карточку. Найти вероятность того, что число, написанное на этой карточке: а) четное; б) двузначное.

Решение: Используем классическое определение вероятности: P=m/n, где m- число исходов, благоприятствующих осуществлению события, а n - число всех равновозможных элементарных исходов.

а) n=9, так как всего 9 различных карточек. m=4, так как всего на 4 карточках написаны четные числа (2, 4, 6, 8). Тогда P=4/9..
б) n=9, так как всего 9 различных карточек. m=0, так как на всех карточках написаны однозначные числа. Тогда P=0/9=0.
Ответ: 4/9, 0.

 

Задача 10. На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания номера слева направо, но не обязательно рядом.

Решение: Используем классическое определение вероятности: P=m/n, где n - число всех равновозможных элементарных исходов, m - число элементарных исходов, благоприятствующих осуществлению события A = (Тома стоят в порядке возрастания номера слева направо, но не обязательно рядом).

n=403938=59280, так как первый том можно поставить на любое из 40 мест, второй - на любое из 39 мест и третий - на любое из оставшихся 38 мест. А число


Тогда искомая вероятность

P(A)=m/n=9880/59280=1/6.

Ответ:  1/6.

 


 

Задача 1: Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад

Задача 1: Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад

Задача 5. На каждой из пяти одинаковых карточек напечатана одна из следующих букв: "а", "м", "р", "т", "ю"

Задача 5. На каждой из пяти одинаковых карточек напечатана одна из следующих букв: "а", "м", "р", "т", "ю"

Задача 10. На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник

Задача 10. На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
11.03.2024