Классификация языков программирования
В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.
Любой алгоритм, есть последовательность предписаний, выполнив которые можно за конечное число шагов перейти от исходных данных к результату. В зависимости от степени детализации предписаний обычно определяется уровень языка программирования – чем меньше детализация, тем выше уровень языка.
По этому критерию можно выделить следующие уровни языков программирования:
· машинные;
· машинно-оpиентиpованные (ассемблеры);
· машинно-независимые (языки высокого уровня).
Машинные языки и машинно-ориентированные языки – это языки низкого уровня, требующие указания мелких деталей процесса обработки данных. Языки же высокого уровня имитируют естественные языки, используя некоторые слова разговорного языка и общепринятые математические символы. Эти языки более удобны для человека.
На заре компьютерной эры машинный код был единственным средством общения человека с компьютером. Огромным достижением создателей языков программирования было то, что они сумели заставить сам компьютер работать переводчиком с этих языков на машинный код.
Существующие языки программирования можно разделить на две группы: процедурные и непроцедурные (рис. 2.1).



Процедурные (или алгоритмические) языки позволяют создавать
программы, представляющие собой систему предписаний для решения конкретной задачи (выполнение команд программы определяется их последовательностью, командами
перехода, цикла или обращениями к процедурам). Роль компьютера сводится
к механическому выполнению этих предписаний.
![]()
![]()



Рис. 2.1. Общая классификация языков
программирования
Процедурные языки разделяют на языки низкого и высокого уровня.
Разные типы процессоров имеют разные наборы команд. Если язык программирования ориентирован на конкретный тип процессора и учитывает его особенности, то он называется языком программирования низкого уровня. Имеется в виду, что операторы языка близки к машинному коду и ориентированы на конкретные команды процессора.
С помощью языков низкого уровня создаются очень эффективные (работают быстрее) и компактные программы (занимают меньше места в памяти), так как разработчик получает доступ ко всем возможностям процессора. С помощью этих языков
удобнее разрабатывать системные программы, драйверы (программы для управления устройствами компьютера), некоторые другие виды программ.
Языком низкого уровня (машинно-ориентированным) является Ассемблер, который просто представляет каждую команду машинного кода, но не в виде чисел, а с помощью условных символьных обозначений, называемых мнемониками.
Языки программирования высокого уровня значительно ближе и понятнее человеку, нежели компьютеру. Особенности конкретных компьютерных архитектур в них не учитываются, поэтому создаваемые программы на уровне исходных текстов легко переносимы на другие платформы, для которых создан транслятор этого языка. Разрабатывать программы на языках высокого уровня с помощью понятных и мощных команд значительно проще, а ошибок при создании программ допускается гораздо меньше. Для перевода исходных программ с языка высокого уровня на машинный язык используются специальные программы – трансляторы.
Работа всех трансляторов строится по одному из двух принципов:
Интерпретация подразумевает пооператорную трансляцию и последующее выполнение оттранслированного оператора исходной программы. В связи с этим можно отметить два недостатка метода интерпретации: во-первых, интерпретирующая программа должна находиться в памяти ЭВМ в течение всего процесса выполнения исходной программы, т. е. занимать определенный объем памяти; во- вторых, процесс трансляции одного и того же оператора повторяется столько раз, сколько раз должна исполняться эта команда в программе, что резко снижает производительность работы программы.
Несмотря на указанные недостатки, трансляторы-интерпретаторы получили достаточное распространение, так как они удобны при разработке и отладке исходных программ.
При компиляции процессы трансляции и выполнения разделены во времени: сначала исходная программа полностью переводится на машинный язык (после чего наличие транслятора в оперативной памяти становится ненужным), а затем оттранслированная программа может многократно исполняться. Следовательно, для одной и той же программы трансляция методом компиляции обеспечивает более высокую производительность вычислительной системы при сокращении требуемой оперативной памяти.
Компиляция программы включает два действия: анализ, т. е. определение правильности записи исходной программы в соответствии с правилами построения языковых конструкций входного языка, и синтез – генерирование эквивалентной программы в машинных кодах.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.