Сетевые устройства.
Сетевые адаптеры выполняют семь основных операций при приеме или передаче сообщений, представленных в таблице
Таблица 6.3. Основные операции, выполняемые сетевыми адаптерами |
|
Наименование операции |
Характеристика операции |
Прием и передача данных |
Данные передаются из ОЗУ ПК в адаптер или из адаптера в память ПК через программируемый канал ввода/вывода, канал прямого доступа или разделяемую память |
Буферизация |
Для согласования скорости обработки различными компонентами ЛВС используются буферы. Буфер позволяет адаптеру осуществлять доступ ко всему пакету данных |
Формирование пакета данных |
Сетевой адаптер делит данные на блоки в режиме передачи и оформляет в виде кадра определенного формата или соединяет их в режиме приема данных. Кадр включает несколько служебных полей, среди которых имеется адрес компьютера назначения и контрольная сумма кадра, по которой сетевой адаптер станции назначения делает вывод о корректности доставленной по сети информации |
Доступ к каналу связи |
Сетевой адаптер использует набор правил, обеспечивающих доступ к среде передачи и позволяющих выявить конфликтные ситуации и контроль состояния сети |
Идентификация адреса |
Сетевой адаптер идентифицирует свой адрес в принимаемом пакете. Физический адрес адаптера может определяться установкой переключателей, храниться в специальном регистре или ПЗУ адаптера |
Кодирование и декодирование данных |
Сетевой адаптер формирует электрические сигналы, используемые для представления данных в процессе передачи их по каналам связи |
Передача и прием импульсов |
В режиме передачи сетевой адаптер передает закодированные электрические импульсы данных в канал связи, а при приеме направляет импульсы на декодирование |
Повторители и концентраторы. Основная функция повторителя (repeater), как это следует из его названия, - повторение сигналов, поступающих на его порт. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети узлами.
Многопортовый повторитель часто называют концентратором (concentrator) или хабом (hub), что отражает тот факт, что данное устройство реализует не только функцию повторения сигналов, но и концентрирует в одном центральном устройстве функции объединения компьютеров в сеть. Практически во всех современных сетевых стандартах концентратор является необходимым элементом сети, соединяющим отдельные компьютеры в сеть.
Концентратор может выполнять следующие дополнительные функции:
· объединение сегментов сети с различными физическими средами в единый логический сегмент;
· автосегментация портов - автоматическое отключение порта при его некорректном поведении (повреждение кабеля, интенсивная генерация пакетов ошибочной длины и т. п.);
· поддержка между концентраторами резервных связей, которые используются при отказе основных;
· защита передаваемых по сети данных от несанкционированного доступа (например, путем искажения поля данных в кадрах, повторяемых на портах, не содержащих компьютера с адресом назначения) и др.
Мосты и коммутаторы делят общую среду передачи данных на логические сегменты. Логический сегмент образуется путем объединения нескольких физических сегментов (отрезков кабеля) с помощью одного или нескольких концентраторов. Каждый логический сегмент подключается к отдельному порту моста или коммутатора. При поступлении кадра на какой-либо из портов мост или коммутатор повторяет этот кадр, но не на всех портах, как это делает концентратор, а только на том порту, к которому подключен сегмент, содержащий компьютер-адресат.
Основное отличие мостов и коммутаторов состоит в том, что мост обрабатывает кадры последовательно (один за другим), а коммутатор - параллельно (одновременно между всеми парами своих портов).
Маршрутизаторы обмениваются информацией об изменениях структуры сетей, трафике и их состоянии. Благодаря этому выбирается оптимальный маршрут следования блока данных в разных сетях от абонентской системы-отправителя к системе-получателю. Маршрутизаторы обеспечивают также соединение административно независимых коммуникационных сетей.
Шлюз является наиболее сложной ретрансляционной системой, обеспечивающей взаимодействие сетей с различными наборами протоколов всех семи уровней модели открытых систем. Шлюзы оперируют на верхних уровнях модели OSI (сеансовом, представительском и прикладном) и представляют наиболее развитый метод подсоединения сетевых сегментов и компьютерных сетей. Необходимость в сетевых шлюзах возникает при объединении двух систем, имеющих различную архитектуру, т. к. в этом случае требуется полностью переводить весь поток данных, проходящих между двумя системами.
В качестве шлюза обычно используется выделенный компьютер, на котором запущено программное обеспечение шлюза и производятся преобразования, позволяющие взаимодействовать нескольким системам в сети.
Каналы связи позволяют быстро и надежно передавать информацию между различными устройствами локальной вычислительной сети.
Выделяют следующие виды каналов связи, представленные на рисунке:
Рис. Каналы связи, используемые в ЛВС
Скачано с www.znanio.ru
© ООО «Знанио»
С вами с 2009 года.