КОНТРОЛЬНАЯ РАБОТА № 7
Оценка 4.8

КОНТРОЛЬНАЯ РАБОТА № 7

Оценка 4.8
docx
28.12.2021
КОНТРОЛЬНАЯ РАБОТА № 7
КОНТРОЛЬНАЯ РАБОТА № 7.docx

Контрольная работа № 7

Р е к о м е н д а ц и и   п о   о ц е н и в а н и ю.

Для получения отметки «3» достаточно выполнить первые два задания. Для получения отметки «5» необходимо выполнить любые четыре задания. Если выполнены все пять заданий, учащийся может получить дополнительную оценку.

В а р и а н т  1

1. Докажите неравенство:

а) (x – 2)2 > x(x – 4);            б) a2 + 1 ≥ 2(3a – 4).

2. Известно, что а < b. Сравните:

а) 21а и 21b;            б) –3,2а и –3,2b;            в) 1,5b и 1,5а.

Результат сравнения запишите в виде неравенства.

3. Известно, что 2,6 << 2,7. Оцените:

а) 2;            б) –.

4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 2,6 < а < 2,7,   1,2 < b < 1,3.

5. К каждому из чисел 2, 3, 4 и 5 прибавили одно и то же число а. Сравните произведение крайних членов получившейся последовательности с произведением средних членов.

В а р и а н т  2

1. Докажите неравенство:

а) (x + 7)2 > x(x + 14);            б) b2 + 5 ≥ 10(b – 2).

2. Известно, что а > b. Сравните:

а) 18а и 18b;            б) –6,7а и –6,7b;            в) –3,7b и –3,7а.

Результат сравнения запишите в виде неравенства.

3. Известно, что 3,1 << 3,2. Оцените:

а) 3;            б) –.

4. Оцените периметр и площадь прямоугольника со сторонами а см и b см, если известно, что 1,5 < а < 1,6,   3,2 < b < 3,3.

5. Даны  четыре  последовательных  натуральных  числа.  Сравните  произведение первого и последнего из них с произведением двух средних чисел.

В а р и а н т  3

1. Докажите неравенство:

а) (x – 3)2 > x(x – 6);            б) у2 + 1 ≥ 2(5у – 12).

2. Известно, что х < у. Сравните:

а) 8х и 8у;            б) –1,4х и –1,4у;            в) –5,6у и –5,6х.

Результат сравнения запишите в виде неравенства.

3. Известно, что 3,6 << 3,7. Оцените:

а) 3;            б) –2.

4. Оцените периметр и площадь прямоугольника со сторонами х см и у см, если известно, что 1,1 < х< 1,2,   1,5 < у < 1,6.

5. Даны три последовательных натуральных числа. Сравните квадрат среднего из них с произведением двух других.

В а р и а н т  4

1. Докажите неравенство:

а) (x + 1)2 > x(x + 2);            б) a2 + 1 ≥ 2(3a – 4).

2. Известно, что х > у. Сравните:

а) 13х и 13у;            б) –5,1х и –5,1у;            в) 2,6у и 2,6х.

Результат сравнения запишите в виде неравенства.

3. Известно, что 3,3 << 3,4. Оцените:

а) 5;            б) –2.

4. Оцените периметр и площадь прямоугольника со сторонами с см и b см, если известно, что 4,6 < с < 4,7,   6,1 < b < 6,2.

5. К каждому из чисел 6, 5, 4 и 3 прибавили одно и то же число т. Сравните произведение средних членов получившейся последовательности с произведением крайних членов.

Решение вариантов контрольной работы

В а р и а н т  1

1. а) (x – 2)2x(x – 4) = x2 – 4x + 4 – x2 + 4x = 4 > 0, значит,

        (x – 2)2 > x(x – 4).

б) a2 + 1 – 2(3a – 4) = a2 + 1 – 6a + 8 = a2 – 6a + 9 = (a – 3)2 ≥ 0,

    значит, a2 + 1 ≥ 2(3a – 4).

2. а) а < b;

        21а < 21b;

б) а < b;

    –3,2а > –3,2b;

в) а < b;

    b > a;

    1,5b > 1,5а.

О т в е т: а) 21а < 21b; б) –3,2а > –3,2b; в) 1,5b > 1,5а.

3. а) 2,6 << 2,7;                              б) 2,6 << 2,7

         5,2 < 2< 5,4;                               –2,7 < –< –2,6.

О т в е т: а) 5,2 < 2< 5,4; б) –2,7 < –< –2,6.

4.      S = a ∙  b см2;                                       P = 2(a + b) см;

          2,6 < а < 2,7                                           2,6 < а < 2,7

          1,2 < b < 1,3                                           1,2 < b < 1,3               

2,6 · 1,2 < a · b < 2,7 · 1,3                  2,6 + 1,2 < a + b < 2,7 + 1,3

       3,12 < ab < 3,51                                2 · 3,8 < 2(a + b) < 2 · 4

       3,12 < S < 3,51                                    7,6 < 2(a + b) < 8,0

                                                                             7,6 < Р < 8,0

О т в е т: 3,12 < S < 3,51; 7,6 < Р < 8,0.

5. Пусть 2 + а, 3 + а, 4 + а, 5 + а – полученная последовательность.

(2 + а)(5 + а) – (3 + а)(4 + а) = 10 + 2а + 5а + а2 – 12 – 3а – 4аа2 =
= –2 < 0, значит, произведение крайних членов последовательности меньше произведения её средних членов.

В а р и а н т  2

1. а) (x + 7)2x(x + 14) = x2 + 14x + 49 – x2 – 14x = 49 > 0,

        значит, (x + 7)2 > x(x + 14).

б) b2 + 5 – 10(b – 2) = b2 + 5 – 10b + 20 = b2 – 10b + 25 = (b – 5)2 ≥ 0,

    значит, b2 + 5 ≥ 10(b – 2).

2. а) а > b;

        18а > 18b;

б) а > b;

    –6,7а < –6,7b;

в) а > b;

    b < a;

    –3,7b > –3,7а.

О т в е т: а) 18а > 18b; б) –6,7а < –6,7b; в) –3,7b > –3,7а.

3. а) 3,1 << 3,2                             б) 3,1 << 3,2

         9,3 << 9,6;                                –3,2 < –< –3,1.

О т в е т: а) 9,3 << 9,6; б) –3,2 < –< –3,1.

4.      S = a ∙  b см2                                 P = 2(a + b) см.

          1,5 < а < 1,6                                   1,5 < а < 1,6

          3,2 < b < 3,3                                 3,2 < b < 3,3           

     4,80 < ab < 5,28                    1,5 + 3,2 < a + b < 1,6 + 3,3

      4,80 < S < 5,28.                   2 · 4,7 < 2(a + b) < 2 · 4,9

                                                           9,4 < 2(a + b) < 9,8

                                                                 9,4 < Р < 9,8.

О т в е т: 4,80 < S < 5,28; 9,4 < Р < 9,8.

5. п, п + 1, п + 2, п + 3 – последовательные натуральные числа.

п (п + 3) – (п + 1) (п + 2) = п2 + 3пп2 – 2пп –2 = –2 < 0, значит, произведение первого и последнего числа меньше произведения двух средних чисел.

В а р и а н т  3

1. а) (x – 3)2x(x – 6) = x2 – 6x + 9 – x2 + 6x = 9 > 0,

        значит, (x – 3)2 > x(x – 6).

б) у2 + 1 – 2(5у – 12) = у2 + 1 – 10у + 24 = у2 – 10у + 25 = (у – 5)2 ≥ 0,

    значит, у2 + 1 ≥ 2(5у – 12).

2. а) х < у;

       8х < 8у;

б) х < у;

    –1,4х > –1,4у;

в) х < у;

    y > x;

    –5,6у < –5,6х.

О т в е т: а) 8х < 8у; б) –1,4х > –1,4у; в) –5,6у < –5,6х.

3. а) 3,6 << 3,7                              б) 3,6 << 3,7

         10,8 < 3< 11,1.                          7,2 < 2< 7,4

                                                                      –7,4 < –2< –7,2.

О т в е т: а) 10,8 < 3< 11,1; б) –7,4 < –2< –7,2.

4.      S = х ∙  у см2                                       P = (х + у) см.

         1,1 < х < 1,2                                         1,1 < х < 1,2

         1,5 < у < 1,6                                       1,5 < у < 1,6              

 1,1 · 1,5 < ху < 1,2 · 1,6                   1,1 + 1,5 < х + у < 1,2 + 1,6

        1,65 < ху < 1,92                             2 · 2,6 < 2(х + у) < 2 · 2,8

        1,65 < S < 1,92.                               5,2 < 2(х + у) < 5,6.

                                                                        5,2 < Р < 5,6.

О т в е т: 1,65 < S < 1,92; 5,2 < Р < 5,6.

5. п, п + 1, п + 2 – последовательные натуральные числа.

(п + 1)2п (п + 2) = п2 + 2п + 1 – п2 – 2п = 1 > 0, значит, квадрат среднего числа больше произведения двух других чисел.

В а р и а н т  4

1. а) (x + 1)2x(x + 2) = x2 + 2x + 1 – x2 – 2x = 1 > 0,

        значит, (x + 1)2 > x(x + 2).

б) a2 + 1 – 2(3a – 4) = a2 + 1 – 6a + 8 = a2 – 6a + 9 = (a – 3)2 ≥ 0,

    значит, a2 + 1 ≥ 2(3a – 4).

2. а) х > у;

       13х > 13у;

б) х > у;

    –5,1х < –5,1у;

в) х > у;

    y > x;

    2,6у < 2,6х.

О т в е т: а) 13х > 13у; б) –5,1х < –5,1у; в) 2,6у < 2,6х.

3. а) 3,3 << 3,4                              б) 3,3 << 3,4

         16,5 < 5< 17,0;                         –6,6 > –2> –6,8;

                                                                     –6,8 < –2< –6,6.

О т в е т: а) 16,5 < 5< 17,0; б) –6,8 < –2< –6,6.

4.      S = с ∙  b см2                                        P = 2(с + b) см

         4,6 < с < 4,7                                            4,6 < с < 4,7

         6,1 < b < 6,2                                           6,1 < b < 6,2             

4,6 · 6,1 < с · b < 4,7 · 6,2                   4,6 + 6,1 < с + b < 4,7 + 6,2

     28,06 < сb < 29,14                           2 · 10,7 < 2(с + b) < 2 · 10,9

     28,06 < S < 29,14.                                 21,4 < 2(с + b) < 21,8

                                                                             21,4 < Р < 21,8.

О т в е т: 28,06 < S < 29,14; 21,4 < Р < 21,8.

5. 6 + т, 5 + т, 4 + т, 3 + т – полученная последовательность.

(5 + т)( 4 + т) – (6 + т)(3 + т) = 20 + 5т + 4т + т2 – 18 – 6т – 3т
т2 = 2 > 0, значит, произведение средних членов последовательности больше произведения её крайних членов.

 

 

 

 


 

Контрольная работа № 7 Р е к о м е н д а ц и и п о о ц е н и в а…

Контрольная работа № 7 Р е к о м е н д а ц и и п о о ц е н и в а…

Даны четыре последовательных натуральных числа

Даны четыре последовательных натуральных числа

О т в е т: а) 21 а < 21 b ; б) –3,2 а > –3,2 b ; в) 1,5 b > 1,5 а

О т в е т: а) 21 а < 21 b ; б) –3,2 а > –3,2 b ; в) 1,5 b > 1,5 а

О т в е т: а) 18 а > 18 b ; б) –6,7 а < –6,7 b ; в) –3,7 b > –3,7 а

О т в е т: а) 18 а > 18 b ; б) –6,7 а < –6,7 b ; в) –3,7 b > –3,7 а

О т в е т: а) 10,8 < 3 < 11,1; б) –7,4 < –2 < –7,2

О т в е т: а) 10,8 < 3 < 11,1; б) –7,4 < –2 < –7,2

S < 29,14. 21,4 < 2( с + b ) < 21,8 21,4 <

S < 29,14. 21,4 < 2( с + b ) < 21,8 21,4 <
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
28.12.2021