Лекция "Торжество компьютерных методов: предсказание строения белков"
Оценка 5

Лекция "Торжество компьютерных методов: предсказание строения белков"

Оценка 5
Лекции
docx
химия
10 кл—11 кл +1
10.03.2024
Лекция "Торжество компьютерных методов: предсказание строения белков"
Лекция по биохимии
Торжество компьютерных методов.docx

Шишканова В.К., учитель химии МБОУ Сеченовская средняя школа

Торжество компьютерных методов: предсказание строения белков

Знание пространственной организации белковых молекул является ключом не только к пониманию их функций и механизма работы, но и основой для разработки эффективных и безопасных лекарственных средств. В то же время, определять структуру белков в прямом эксперименте не всегда возможно или целесообразно — из-за сложности, дороговизны и ограниченности возможностей экспериментальных методик. Однако иногда удаётся преодолеть эти сложности, подойдя к проблеме «с другого конца»: структуру биомакромолекул можно «предсказать», используя теоретические подходы — основанные на физических или эмпирических приближениях.

Для чего требуется знать структуру белков?

Белки — универсальные биополимеры, из которых строится жизнь, — выполняют весь спектр биологических функций: от структурной до каталитической. (Их роль для жизни в целом признана даже классиками марксистско-ленинской философии.) Конечно, незаменимы и многие другие молекулы: «первенство» в хранении и передаче информации принадлежит нуклеиновым кислотам, а изрядную долю структурной и формообразующей функции берут на себя липиды — основные компоненты биомембран живых клеток. Рибонуклеиновым кислотам, кроме уже ставших для них привычными структурной и каталитической функций, приписывают всё новые и новые «роли», подкрепляя гипотезу о «мире РНК», возможно, существовавшем на заре эпохи зарождения жизни на Земле. Несмотря на всё это, именно белки играют максимум ролей в живом мире (по крайней мере, таком, каким мы его знаем теперь), и важность их изучения не ограничивается только фундаментальной наукой: сегодня и медицина, и промышленность — потребители знаний о функциях и структуре белков.

Понимание механизмов функционирования живых систем, а значит, и возможность влиять на них, например, с помощью лекарственных средств, требует знания структуры белковых молекул и глубокого понимания их функций. Благодаря работам Кристиана Анфинсена  — нобелевского лауреата по химии 1972 года «за работы по рибонуклеазе, в частности, за установление связи между последовательностью аминокислот и конформацией биологически активной молекулы», — нам известно, что «необходимая [для сворачивания белка] информация заключена в линейной последовательности аминокислот пептидной цепочки, и что никакой дополнительной генетической информации, большей, чем та, которая заключена в ДНК, не требуется». Однако физико-химические аспекты этого сложнейшего процесса, называемого также фолдингом белка, остаются до сих пор понятыми лишь приблизительно.

Кроме учёных, структура белка интересует и специалистов более практического профиля. Фармацевты и врачи, например, заинтересованы в производстве и выпуске на рынок новых поколений лекарственных средств. Однако в наше время уже нельзя рассчитывать на случайный успех, и нужно хорошо разбираться в молекулярных механизмах действия проектируемого лекарства, — направленного, скорее всего, на взаимодействие с каким-нибудь белком (рецептором или ферментом) в человеческом организме. Проектирование нового лекарства с учётом атомарного строения молекул-«мишеней», на которые это лекарство будет действовать — наукоёмкий и сложный процесс, называемый драг-дизайном.

В различных отраслях промышленности — например, химической и пищевой, а в перспективе и энергетической, и остальных, — также используются белки. Разработка новых биотехнологических ферментов, способных послужить на благо общества, кроме знания структуры белков и понимания механизмов их работы, требует ещё умения проектировать новые функции в белках, ранее выполнявших какую-то другую работу. Здесь, правда, требуется умение решать обратную задачу — не определять структуру существующего белка, а создавать белок, структура (а значит, и свойства) которого будут заданы заранее, — но ведь решение этой задачи требует схожих знаний и навыков!

Фолдинг: возможно ли предсказать структуру белка на компьютере?

Фолдинг — сворачивание белков (и других биомакромолекул) из развёрнутой конформации в «нативную» форму — физико-химический процесс, в результате которого белки в своей естественной «среде обитания» (растворе, цитоплазме или мембране) приобретают характерные только для них пространственную укладку и функции. Фолдинг причисляют к списку крупнейших неразрешённых научных проблем современности — поскольку процесс этот далёк от окончательного понимания.

С термодинамической точки зрения самосворачивание белкá является переходом белковой молекулы в наиболее статистически вероятную конформацию (что практически можно приравнять к конформации с наименьшей потенциальной энергией). С кинетикой же фолдинга связывают так называемый парадокс Левинталя, согласно которому, если бы молекула белкá длиной хотя бы 100 аминокислотных остатков «перебирала» все возможные конформации, прежде чем свернуться в нативную форму, этот процесс потребовал бы времени, превышающего время существования Вселенной. Однако из практики известно, что максимальное время сворачивания ограничивается минутами, типичное время — порядка миллисекунд, а кратчайший требуемый срок, зарегистрированный для трёхлистового β-слоя — всего 140 нс!

Методики de novo фолдинга для небольших белков уже достигли определённой зрелости, а возможность создать белок с не встречающимся в природе типом укладки «с нуля» дополнительно подчёркивает потенциал этой области — ведь свернуться способна далеко не каждая последовательность!

Однако для белков бóльшей длины успехи de novo подходов пока более чем скромны, и предсказать устройство таких белков без использования дополнительной информации и эмпирических подходов уже невозможно. И тут на помощь приходит сама Природа — ведь белки не независимы друг от друга, и между ними есть «родственные» отношения! Предсказание структуры белков, использующее эти отношения, называется сопоставительным моделированием, или моделированием на основании гомологии.

В 2021 году произошло важнейшее открытие: ученые научились предсказывать трехмерные структуры белков с помощью компьютерных алгоритмов и искусственного интеллекта. Rosetta — проект добровольных вычислений, разработанный в лаборатории Бейкера при Вашингтонском университете и AlphaFold — программа на базе искусственного интеллекта, созданная в Google DeepMind. Это удивительно, ведь данные, которые раньше приходилось добывать годами работы в лаборатории, теперь можно получить за минуту с помощью расчета компьютера. Нейросеть предсказывает уже определенные структуры белков, имея в базе данных десятки тысяч структур.
На сегодняшний день более 90% структур, предсказанных этими алгоритмами, верны.       Это значит, что точность предсказания структуры белка на данный момент выше, чем точность прогноза погоды.

Фактически создатели программ обучили искусственный интеллект предсказывать, как свернется молекула на основе данных из базы уже определенных структур белков. Программу тренируют узнавать элементы структуры, фактически создается огромный каталог, где указано, какие тенденции имеют те или иные участки из аминокислот.
Простыми словами можно сказать, что программы были обучены методом перебора.
Если же предсказать данное изменение и заранее знать трехмерную структуру белка, может быть разработано лекарство, взаимодействующее точечно с измененным участком поверхности.

Таким образом, предсказание трехмерной структуры белков значительно ускоряет процесс разработки лекарств.


 

Скачано с www.znanio.ru

Шишканова В.К., учитель химии МБОУ

Шишканова В.К., учитель химии МБОУ

Кроме учёных, структура белка интересует и специалистов более практического профиля

Кроме учёных, структура белка интересует и специалистов более практического профиля

Методики de novo фолдинга для небольших белков уже достигли определённой зрелости, а возможность создать белок с не встречающимся в природе типом укладки «с нуля» дополнительно…

Методики de novo фолдинга для небольших белков уже достигли определённой зрелости, а возможность создать белок с не встречающимся в природе типом укладки «с нуля» дополнительно…
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
10.03.2024