ЛЕКЦИЯ № 10. Графы УД. Информатика и информационные технологии
Оценка 4.8

ЛЕКЦИЯ № 10. Графы УД. Информатика и информационные технологии

Оценка 4.8
Занимательные материалы +2
docx
информатика
Взрослым
13.01.2017
ЛЕКЦИЯ № 10. Графы УД. Информатика и информационные технологии
Понятие графа. Способы представления графа Граф – пара G = (V,E), где V – множество объектов произвольной природы, называемых вершинами, а Е – семейство пар ei = (vil, vi2), vijOV, называемых ребрами. В общем случае множество V и (или) семейство Е могут содержать бесконечное число элементов, но мы будем рассматривать только конечные графы, т. е. графы, у которых как V, так и Е конечны. Если порядок элементов, входящих в ei, имеет значение, то граф называется ориентированным, сокращенно – орграф, иначе – неориентированным. Ребра орграфа называются дугами. В дальнейшем будем считать, что термин «граф», применяемый без уточнений (ориентированный или неориентированный), обозначает неориентированный граф. Если е = , то вершины v и и называются концами ребра. При этом говорят, что ребро е является смежным (инцидентным) каждой из вершин v и и. Вершины v и и также называются смежными (инцидентными). В общем случае допускаются ребра вида е = ; такие ребра называются петлями.
ЛЕКЦИЯ № 10. Графы.docx

ЛЕКЦИЯ № 10. Графы

 

1. Понятие графа. Способы представления графа

Граф – пара G = (V,E), где V – множество объектов произвольной природы, называемых вершинами, а Е – семейство пар ei = (vil, vi2), vijOV, называемых ребрами. В общем случае множество V и (или) семейство Е могут содержать бесконечное число элементов, но мы будем рассматривать только конечные графы, т. е. графы, у которых как V, так и Е конечны. Если порядок элементов, входящих в ei, имеет значение, то граф называется ориентированным, сокращенно – орграф, иначе – неориентированным. Ребра орграфа называются дугами. В дальнейшем будем считать, что термин «граф», применяемый без уточнений (ориентированный или неориентированный), обозначает неориентированный граф.

Если е = <u,v>, то вершины v и и называются концами ребра. При этом говорят, что ребро е является смежным (инцидентным) каждой из вершин v и и. Вершины v и и также называются смежными (инцидентными). В общем случае допускаются ребра вида е = <v, v>; такие ребра называются петлями.

Степень вершины графа – это число ребер, инцидентных данной вершине, причем петли учитываются дважды. Поскольку каждое ребро инцидентно двум вершинам, сумма степеней всех вершин графа равна удвоенному количеству ребер: Sum(deg(vi), i=1…|V|) = 2 * |E|.

Вес вершины – число (действительное, целое или рациональное), поставленное в соответствие данной вершине (интерпретируется как стоимость, пропускная способность и т. д.). Вес, длина ребра – число или несколько чисел, которые интерпретируются как длина, пропускная способность и т. д.

Путем в графе (или маршрутом в орграфе) называется чередующаяся последовательность вершин и ребер (или дуг – в орграфе) вида v0, (v0,v1), v1…, (vn – 1,vn), vn. Число n называется длиной пути. Путь без повторяющихся ребер называется цепью, без повторяющихся вершин – простой цепью. Путь может быть замкнутым (v0 = vn). Замкнутый путь без повторяющихся ребер называется циклом (или контуром в орграфе); без повторяющихся вершин (кроме первой и последней) – простым циклом.

Граф называется связным, если существует путь между любыми двумя его вершинами, и несвязным – в противном случае. Несвязный граф состоит из нескольких связных компонент (связных подграфов).

Существуют различные способы представления графов. Рассмотрим каждый из них в отдельности.

1. Матрица инцидентности.

Это прямоугольная матрица размерности n х щ, где n – количество вершин, am – количество ребер. Значения элементов матрицы определяются следующим образом: если ребро xi и вершина vj инцидентны, то значение соотвествующего элемента матрицы равно единице, в противном случае значение равно нулю. Для ориентированных графов матрица инцидентности строится по следующему принципу: значение элемента равно – 1, если ребро xi исходит из вершины vj, равно 1, если ребро xi заходит в вершину vj, и равно О в противном случае.

2. Матрица смежности.

Это квадратная матрица размерности n х n, где n – количество вершин. Если вершины vi и vj смежны, т. е. если существует ребро, их соединяющее, то соответствующий элемент матрицы равен единице, в противном случае он равен нулю. Правила построения данной матрицы для ориентированного и неориентированного графов не отличаются. Матрица смежности более компактна, чем матрица инцидентности. Следует заметить, что эта матрица также сильно разрежена, однако в случае неориентированного графа она является симметричной относительно главной диагонали, поэтому можно хранить не всю матрицу, а только ее половину (треугольную матрицу).

3. Список смежности (инцидентности).

Представляет собой структуру данных, которая для каждой вершины графа хранит список смежных с ней вершин. Список представляет собой массив указателей, i-ый элемент которого содержит указатель на список вершин, смежных с i-ой вершиной.

Список смежности более эффективен по сравнению с матрицей смежности, так как исключает хранение нулевых элементов.

4. Список списков.

Представляет собой древовидную структуру данных, в которой одна ветвь содержит списки вершин, смежных для каждой из вершин графа, а вторая ветвь указывает на очередную вершину графа. Такой способ представления графа является наиболее оптимальным.

2. Представление графа списком инцидентности. Алгоритм обхода графа в глубину

Для реализации графа в виде списка инцидентности можно использовать следующий тип:

Type List = ^S;

S = record;

inf : Byte;

next : List;

end;

Тогда граф задается следующим образом:

Var Gr : array[1..n] of List;

Теперь обратимся к процедуре обхода графа. Это вспомогательный алгоритм, который позволяет просмотреть все вершины графа, проанализировать все информационные поля. Если рассматривать обход графа в глубину, то существуют два типа алгоритмов: рекурсивный и нерекурсивный.

При рекурсивном алгоритме обхода графа в глубину мы берем произвольную вершину и, отыскиваем произвольную непросмотренную (новую) вершину v, смежную с ней. Затем принимаем вершину v за неновую и отыскиваем любую смежную с ней новую вершину. Если же у какой-либо вершины нет более новых непросмотренных вершин, то полагаем эту вершину использованной и возвращаемся на уровень выше в ту вершину, из которой попали в нашу использованную вершину. Обход продолжается таким образом до тех пор, пока в графе не останется новых непросмотренных вершин.

На языке Pascal процедура обхода в глубину будет выглядеть следующим образом:

Procedure Obhod(gr : Graph; k : Byte);

Var g : Graph; l : List;

Begin

nov[k] := false;

g := gr;

While g^.inf <> k do

g := g^.next;

l := g^.smeg;

While l <> nil do begin

If nov[l^.inf] then Obhod(gr, l^.inf);

l := l^.next;

End;

End;

Примечание

В данной процедуре при описании типа Graph имелось в виду описание графа списком списков. Массив nov[i] – специальный массив, i-ый элемент которого равен True, если i-ая вершина не просмотрена, и False – в противном случае.

Также часто используется нерекурсивный алгоритм обхода. В этом случае рекурсия заменяется на стек. Как только вершина просмотрена, она помещается в стек, а использованной она становится, когда больше нет новых вершин, смежных с ней.

3. Представление графа списком списков. Алгоритм обхода графа в ширину

Граф можно определить с помощью списка списков следующим образом:

Type List = ^Tlist;

Tlist = record

inf : Byte;

next : List;

end;

Graph = ^TGpaph;

TGpaph = record

inf : Byte;

smeg : List;

next : Graph;

end;

При обходе графа в ширину мы выбираем произвольную вершину и просматриваем сразу все вершины, смежные с ней. Вместо стека используется очередь. Алгоритм обхода в ширину очень удобен при нахождении наикратчайшего пути в графе.

Приведем процедуру обхода графа в ширину на псевдокоде:

Procedure Obhod2(v);

{величины spisok, nov – глобальные}

Begin

queue = O;

queue <= v;

nov[v] = False;

While queue <> O do

Begin

p <= queue;

For u in spisok(p) do

If nov[u] then

Begin

nov[u] := False;

queue <= u;

End;

End;

End;


 

Скачано с www.znanio.ru

ЛЕКЦИЯ № 10. Графы 1. Понятие графа

ЛЕКЦИЯ № 10. Графы 1. Понятие графа

Представляет собой структуру данных, которая для каждой вершины графа хранит список смежных с ней вершин

Представляет собой структуру данных, которая для каждой вершины графа хранит список смежных с ней вершин

Tlist = record inf : Byte; next :

Tlist = record inf : Byte; next :
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
13.01.2017