ВАШЕ СВИДЕТЕЛЬСТВО
О ПУБЛИКАЦИИ В СМИ И РЕЦЕНЗИЯ
бесплатно за 1 минуту
Добавить материал
Количество Ваших материалов: 0.
Авторское
свидетельство о публикации в СМИ
добавьте 1 материал
Свидетельство
о создании электронного портфолио
добавьте 5 материала
Секретный
подарок
добавьте 10 материалов
Грамота за
информатизацию образования
добавьте 12 материалов
Рецензия
на любой материал бесплатно
добавьте 15 материалов
Благодарность образовательного СМИ
за внедрение творческих и прогрессивных педаг. идей
добавьте 20 материалов
Сертификат
почетного автора образовательных и методических публикаций
добавьте 30 материалов
Почётная грамота
педагог. мастерства
за вклад в развитие образов. интернет-пространства
добавьте 40 материалов
Золотая карта
1000 руб. в год
в качестве скидки до 50% на все услуги
добавьте 50 материалов
Большой набор
для быстрого создания презентаций
добавьте 75 материалов
Наталья Оборина Свидетельство о публикации Рецензия
Свидетельство Скачивание доступно только автору
ЛЕКЦИЯ № 9. Древовидные структуры данных УД. Информатика и информационные технологии

ЛЕКЦИЯ № 9. Древовидные структуры данных УД. Информатика и информационные технологии

Древовидные структуры данных Древовидной структурой данных называется конечное множество элементов-узлов, между которыми существуют отношения – связь исходного и порожденного. Если использовать рекурсивное определение, предложенное Н. Виртом, то древовидная структура данных с базовым типом t – это либо пустая структура, либо узел типа t, с которым связано конечное множество древовидных структур с базовым типом t, называемых поддеревьями. Далее дадим определения, используемые при оперировании древовидными структурами. Если узел у находится непосредственно под узлом х, то узел у называется непосредственным потомком узла х, а х – непосредственным предком узла у, т. е., если узел х находится на i-ом уровне, то соответственно узел у находится на (i + 1) – ом уровне. Максимальный уровень узла дерева называется высотой или глубиной дерева. Предка не имеет только один узел дерева – его корень. Узлы дерева, у которых не имеется потомков, называются терминальными узлами (или листами дерева). Все остальные узлы называются внутренними узлами. Количество непосредственных потомков узла определяет степень этого узла, а максимально возможная степень узла в данном дереве определяет степень дерева.

  • Занимательные материалы
  • Лекции
  • Образовательные программы
  • Информатика
  • Профессиональная подготовка