Лабораторная работа №1
Тема: Логические элементы ЭВМ. Работа логических узлов ЭВМ.
Цель: Закрепление знаний об алгебре логики. Формирование практических навыков построения таблиц истинности, логических схем и упрощений логических выражений.
Время выполнения:2 часа.
Теоретические сведения
Логической основой компьютера является алгебра логики, которая рассматривает логические операции над высказываниями.
Алгебра логики – это раздел математики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности) и логических операций над ними.
Логическое высказывание – это любое повествовательное предложение, в отношении которого можно однозначно сказать, истинно оно или ложно.
Высказывательная форма – это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.
Алгебра логики рассматривает любое высказывание только с одной точки зрения – является ли оно истинным или ложным. Слова и словосочетания «не», «и», «или», «если..., то», «тогда и только тогда» и другие позволяют из уже заданных высказываний строить новые высказывания. Такие слова и словосочетания называются логическими связками.
Высказывания, образованные из других высказываний с помощью логических связок, называются составными(сложными). Высказывания, которые не являются составными, называются элементарными (простыми).
Пример.высказывание «Число 6 делится на 2» - простое высказывание. Высказывание «Число 6 делится на 2, и число 6 делится на 3» - составное высказывание, образованное из двух простых с помощью логической связки «и».
Истинность или ложность составных высказываний зависит от истинности или ложности элементарных высказываний, из которых они состоят.
Чтобы обращаться к логическим высказываниям, им назначают имена.
Пример. Обозначим через А простое высказывание «число 6 делится на 2», а через В простое высказывание «число 6 делится на 3». Тогда составное высказывание «Число 6 делится на 2, и число 6 делится на 3» можно записать как «А и В». Здесь «и» – логическая связка, А, В – логические переменные, которые могут принимать только два значения – «истина» или «ложь», обозначаемые, соответственно, «1» и «0».
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение (табл. 1).
Таблица 1
Основныелогическиеоперации
НЕ Операция, выражаемая словом «не», называется отрицанием и обозначается чертой над высказыванием (или знаком ¬). Высказывание ¬А истинно, когда A ложно, и ложно, когда A истинно.
И Операция, выражаемая связкой «и», называется конъюнкцией (лат. conjunctio – соединение) или логическим умножением и обозначается точкой « • » (может также обозначаться знаками или &). Высказывание А • В истинно тогда и только тогда, когда оба высказывания А и В истинны.
ИЛИ Операция, выражаемая связкой «или» (в неисключающем смысле этого слова), называется дизъюнкцией (лат. disjunctio – разделение) или логическим сложением и обозначается знаком (или плюсом). Высказывание А В ложно тогда и только тогда, когда оба высказывания А и В ложны.
ЕСЛИ … ТО Операция, выражаемая связками «если …, то», «из … следует», «... влечет …», называется импликацией(лат. implico – тесно связаны) и обозначается знаком → . Высказывание А→В ложно тогда и только тогда, когда А истинно, а В ложно.
РАВНОСИЛЬНО Операция, выражаемая связками «тогда и только тогда», «необходимо и достаточно», «... равносильно …», называется эквиваленцией или двойной импликацией и обозначается знаком ↔ или ~ . Высказывание А↔В истинно тогда и только тогда, когда значения А и В совпадают.
ЛИБО … ЛИБО Операция, выражаемая связками «Либо … либо», называется исключающее ИЛИ или сложением по модулю 2 и обозначается XOR или . Высказывание А В истинно тогда и только тогда, когда значения А и В не совпадают.
Операций отрицания, дизъюнкции и конъюнкции достаточно, чтобы описывать и обрабатывать логические высказывания.
Порядок выполнения логических операций задается круглыми скобками. Но для уменьшения числа скобок договорились считать, что сначала выполняется операция отрицания («не»), затем конъюнкция («и»), после конъюнкции – дизъюнкция («или») и исключающего или и в последнюю очередь – импликация и эквиваленция.
С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).
Логическая формула - это символическая запись высказывания, состоящая из логических величин (констант или переменных), объединенных логическими операциями (связками).
Значения логической функции для разных сочетаний значений входных переменных – или, как это иначе называют, наборов входных переменных –обычно задаются специальной таблицей. Такая таблица называется таблицей истинности.
Приведем таблицу истинности основных логических операций (табл. 2).
Таблица 2
Таблица истинности основных логических операций
Логические формулы можно также представлять с помощью языка логических схем.
Существует три базовых логических элемента, которые реализуют три основные логические операции (Рис. 1):
- логический элемент «И» – логическое умножение – конъюнктор;
- логический элемент «ИЛИ» – логическое сложение – дизъюнктор;
- логический элемент «НЕ» – инверсию – инвертор.
Конъюктор |
Дизъюнктор |
Инвертор |
|
|
|
Рисунок 1 – Обозначение базовых логических элементов
Поскольку любая логическая операция может быть представлена в виде комбинации трех основных, любые устройства компьютера, производящие обработку или хранение информации, могут быть собраны из базовых логических элементов, как из “кирпичиков”.
Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс –логический смысл сигнала – 1, нет импульса – 0. На входы логического элемента поступают сигналы-значения аргументов, на выходе появляется сигнал-значение функции.
Преобразование сигнала логическим элементом задается таблицей состояний, которая фактически является таблицей истинности, соответствующей логической функции, только представлена в форме логических схем. В такой форме удобно изображать цепочки логических операций и производить их вычисления.
Алгоритм построения логических схем.
1. Определить число логических переменных.
2. Определить количество логических операций и их порядок.
3. Изобразить для каждой логической операции соответствующий ей логический элемент.
4. Соединить логические элементы в порядке выполнения логических операций.
Пример. По заданной логической
функции построить логическую схему.
Решение.
1. Число логических переменных = 2 (A и B).
2. Количество операций = 5 (2 инверсии, 2 конъюнкции, 1 дизъюнкция). Сначала выполняются операции инверсии, затем конъюнкции, в последнюю очередь операция дизъюнкции.
3. Схема будет содержать 2 инвертора, 2 конъюнктора и 1 дизъюнктор.
4. Построение надо начинать с логической операции, которая должна выполняться последней. В данном случае такой операцией является логическое сложение, следовательно, на выходе должен быть дизъюнктор. На него сигналы подаются с двух конъюнкторов, на которые, в свою очередь, подаются один входной сигнал нормальный и один инвертированный (с инверторов) (Рис. 2).
Рисунок 2 – Готовая логическая схема
Логические законы и правила преобразования логических выражений
Если две формулы А и В одновременно, то есть при одинаковых наборах значений входящих в них переменных, принимают одинаковые значения, то они называются равносильными.
В алгебре логики имеется ряд законов, позволяющих производить равносильные преобразования логических выражений.
1) Закон противоречия:
2) Закон исключенного третьего:
3) Закон двойного отрицания:
4) Законы де Моргана:
5) Законыповторения: A & A = A; A v A = A.
6) Законыпоглощения: A v (A & B) = A; A & (A v B) = A.
7) Законыисключенияконстант: A v 1 = 1; A v 0 = A; A & 1 = A; A & 0 = 0.
8) Законы склеивания:
9) Закон контрапозиции: (A v B) = (B v A).
10)
11)
Справедливость этих законов можно доказать составив таблицу истинности выражений в правой и левой части и сравнив соответствующие значения.
Основываясь на законах, можно выполнять упрощение сложных логических выражений. Такой процесс замены сложной логической функции более простой, но равносильной ей, называется минимизацией функции.
Задания к лабораторной работе
Содержание отчета
1. Текст задания (с данными своего варианта).
2. Представление по каждому пункту задания подробного решения.
Технология выполнения работы
В данной работе необходимо составить таблицу истинности логического выражения, построить схему логической функции и упростить логическое выражение заданные каждому студенту в соответствии с его вариантом, выполнить в MicrosoftOfficeExcel. Каждое задание выполняется на отдельном листе.
Задание 1
Составить таблицу истинности логического выражения C.
Задание 2
Построить логическую схему функции F(A,B) и таблицу истинности.
Задание 3
Упростить логическое выражение D, построить таблицу истинности и схему упрощенного выражения.
Контрольные вопросы:
1. Что такое высказывание (приведите пример)?
2. Как называются и как обозначаются (в языке математики) следующие операции: ИЛИ, НЕ, И, ЕСЛИ … ТО, ТОГДА И ТОЛЬКО ТОГДА, ЛИБО …ЛИБО?
3. Укажите приоритеты выполнения логических операций.
4. Изобразите функциональные элементы: конъюнктор, дизъюнктор, инвертор.
Какие логические выражения называются равносильными?
Скачано с www.znanio.ru
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.