Мастер-класс "Нетрадиционные методы обучения математике"
Оценка 4.7
Занимательные материалы
doc
математика
8 кл—11 кл
21.01.2018
Изменились цели общего среднего образования: создаются новые концепции образования, основанные на деятельностном подходе. Обновление образования требует использования нетрадиционных методов и форм организации обучения, которые служат реализации следующих целей:
- научиться познавать,
- научиться делать,
- научиться жить вместе,
- научиться жить в ладу с самим собой.Изменились цели общего среднего образования: создаются новые концепции образования, основанные на деятельностном подходе. Обновление образования требует использования нетрадиционных методов и форм организации обучения, которые служат реализации следующих целей:
- научиться познавать,
- научиться делать,
- научиться жить вместе,
- научиться жить в ладу с самим собой.
Нетрадиционные методы обучения математике.doc
Нетрадиционные методы обучения математике
Дорофеева Лилия,
учитель математики, МБОУ «СОШ №6» г.Нижнекамска НМР РТ
Свой мастеркласс я хотела бы начать с метафоры:
«Высоковысоко в небе живёт маленькаямаленькая птичка,
Глубокоглубоко в море живёт маленькая–маленькая рыбка,
Они очень любят другдруга и хотят встретиться.
Как вы думаете, смогут ли они встретиться? Если да, то где?».
(Примерные варианты ответов: нет, на небе, на уровне моря,…)
Ответы будут у нас разные, так как мы подходим к этому творчески, не
подчиняясь какому то алгоритму. Значит, мы действуем нестандартно.
Сегодня происходят глобальные перемены в обществе, а значит, изменяются
требования к образованию и, конечно, к учителю. Мы должны не только дать
знания детям, и не только научить применять их в жизненных ситуациях, но и
научить детей думать, анализировать, отбирать необходимую информацию.
Изменились цели общего среднего образования: создаются новые концепции
образования, основанные на деятельностном подходе. Обновление
образования требует использования нетрадиционных методов и форм
организации обучения, которые служат реализации следующих целей:
научиться познавать,
научиться делать,
научиться жить вместе,
научиться жить в ладу с самим собой.
Чтобы моя педагогическая деятельность стала результативной, я сделала
SWOTанализ своей работы.(Кстати, эту методику мы можем применить и на
уроках).
Сильные стороны
Слабые стороны образование
опыт работы
желание работать
владение технологиями
низкая мотивация школьников к
учебному труду;
необходимость усвоения большого
объема учебного материала и
недостаточно
общеучебные умения и
сформированные
навыки
школьников;
низкая заинтересованность родителей
Возможности
активизация учащихся с помощью
в
родителей
образовательном процессе.
Риски
«профессиональное
участии
в
выгорание»
нестандартных приемов;
участие в конференциях, конкурсах;
учителя;
перегруженность.
улучшение результатов ОГЭ и ЕГЭ.
Рассмотрим несколько методов и приемов, которые я использую на своих
уроках.
Один из нестандартных приемов – это кодирование информации. Самый
простой из них алфавитный код. Простую кодовую таблицу можно
составить , если поставить в соответствие каждой букве его порядковый
номер, например, А1, Б2,…., Я33
В старших классах кодирование информации можно выполнить с помощью
штрих кодов. У наших детей есть смартфоны, планшеты, на которых есть
программа считывания штрих кодов. Например, условия задачи я кодирую и
раздаю учащимся. Дети, используя программу, читают условие задачи и
выполняют её дома. Это помогает создать атмосферу творческого поиска,
помогающую учащемуся как можно более полно раскрыть свои способности. Зрительное восприятие определенного расположения величин дает
дополнительную информацию, облегчающую процесс решения задачи и её
проверки. Не зря китайская пословица гласит:
«Услышал забыл.
Увидел запомнил.
Сделал – понял».
Например, нужно объяснить теорему о сумме углов треугольника (180
градусов). Берем нарисованный на листе треугольник, отмечаем углы 1 , 2 ,
3 .Разрезаем этот треугольник по линиям и собираем вершины треугольника
А,В,С в одну точку – получится развернутый угол (180 градусов).
С
А
В
Можно предложить метод решения задач с помощью математических
моделей. В большинстве случаев задачи на смеси и сплавы становятся
понятнее, если при их решении использовать составление математических
моделей: рисунки, таблицы.
Многие ученики относятся к ним с опаской. В КИМ ах ЕГЭ эти задачи
встречаются в части В, где от учащихся не требуются обоснованное решение,
а только ответ. В ОГЭ эти задачи относятся ко второй части, где ученик должен записать обоснованное решение.
Когда мы с учениками решаем задачи на смеси и сплавы, я всегда им говорю:
Не надо бояться этих задач, они настолько легкие, что вы об этом
даже не подозреваете. И мы с Вами сейчас в этом убедимся.
Для этого предлагаю вам «метод стаканчиков». Для этого изобразим
прямоугольники : наверху пишем массу раствора или смеси,
внизу – концентрацию . Например,
200г
10%
Итак, рассмотрим задачу: «Имеется 30 кг 26% го раствора соли.
Требуется получить 40% раствор соли. Сколько кг 50% раствора соли
нужно добавить?»
Попробуем нарисовать прямоугольник для первого раствора, с
концентрацией 26%
Теперь для второго, с концентрацией 50 % и третьего, с концентрацией 40%.
Попробуем обозначить массу второго раствора через х.
Как тогда можно обозначить массу третьего раствора? (30+х)
Что сделали со вторым раствором? (Добавили к первому).
Какой знак можно поставить между первым и вторым раствором? («+»)
Чему равна сумма этих двух растворов?
Рис. 1 рис. 2 рис. 3
30 кг х кг (30+х) кг
+ =
26%
50%
40%
Какое равенство можно составить?
30? 0,26+ х? 0,5=(30+х)? 0,4 Уже на этих примерах можно убедиться, что знание нестандартных
приемов и методов помогает намного быстрее дать ответ на поставленный в
задаче вопрос. А значит, помогут и при сдаче ЕГЭ по математике.
Подведем итог нашего мастер класса. Для этого попробуем составить
синквейн. Давайте, для этого вспомним что это такое:
Синквейн – это не простое стихотворение, а стихотворение, написанное
по следующим правилам:
1 строка – одно существительное, выражающее главную тему cинквейна.
2 строка – два прилагательных, выражающие главную мысль.
3 строка – три глагола, описывающих действия в рамках темы.
4 строка – фраза, несущая определенный смысл.
5 строка – заключение в форме существительного (ассоциация с первым
словом).
Возможно, наш синквейн будет выглядеть так:
Задача.
Трудная, непонятная.
Думать, рассуждать, решать.
Развивает логическое мышление.
Мастер класс.
Мастер-класс "Нетрадиционные методы обучения математике"
Мастер-класс "Нетрадиционные методы обучения математике"
Мастер-класс "Нетрадиционные методы обучения математике"
Мастер-класс "Нетрадиционные методы обучения математике"
Мастер-класс "Нетрадиционные методы обучения математике"
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.