Методическая разработка Электробезопасность
Оценка 4.9

Методическая разработка Электробезопасность

Оценка 4.9
docx
05.06.2021
Методическая разработка Электробезопасность
Электробезопасность.docx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Методическая разработка

по ОП.03 Электротехника и электроника

на тему

 «Электробезопасность»

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2021


 

Цель занятия:

1.     Изучить тему Электробезопасность

 

Время:  2 часа

 

Место: кабинет Электротехники и электроники

 

Учебно - материальное обеспечение:

Плакаты, презентации, лабораторное оборудование.

 

Распределение времени занятия:

Вступительная часть                                                                      5 мин;

Проверка подготовки обучающихся к занятию                             5 мин;

Учебные вопросы занятия                                                              25 мин;

Домашнее задание                                                                         5 мин;

Заключение                                                                                    5 мин.

 


Содержание занятия

 

Вступительная часть

 

        принять рапорт дежурного по группе;

        проверить наличие студентов и их готовность к занятию;

        ответить на вопросы, которые возникли при подготовке к занятию на самостоятельной работе;

        провести опрос по ранее изученному материалу:

        Опрос рекомендуется провести устно, задавая вопросы и вызывая одного-двух студентов для ответа,

 


ЭЛЕКТРОБЕЗОПАСНОСТЬ

14.1 Общие сведения

Электрический ток (ЭТ) при прохождении через человеческое тело оказывает поражающее действие на организм. Это происходит при соприкосновении с отдельными частями электроустановок, находящихся под напряжением.

Степень поражения ЭТ зависит от длительности и частоты тока. Наиболее опасным является ток промышленной частоты (50 Гц), сила которого в 0,05 А и более является смертельной.

Наиболее опасное поражение возникает, когда ток проходит через мозг или сердце.

Сила тока I, проходящего через тело человека, попавшего под напряжение U, определяется согласно закону Ома сопротивлением Rч тела человека:

Сопротивление человека изменяется в широких пределах – от нескольких тысяч до нескольких сотен Ом, т.к. оно зависит от многих факторов: состояния кожного покрова, площади поверхности соприкосновения тела с токоведущими частями и т.д.

Наименьшее сопротивление человек имеет в сырой запыленной среде, при высокой температуре окружающей среды, когда все тело покрыто потом и загрязнено. Поэтому даже низкие напряжения могут быть опасными для человека.

Так, например, при Rч = 600 Ом опасным является напряжение

 B.

На практике в наиболее тяжелых условиях можно считать безопасным напряжение ниже 12 В, в сухих, мало загрязненных помещениях – ниже 36 В.

По степени опасности все помещения делятся на три категории: без повышенной опасности, с повышенной опасностью и особо опасные.

К первой категории относятся помещения сухие, отапливаемые, с токонепроводящими полами и относительной влажностью 60%.

В помещениях с повышенной опасностью имеют место высокая влажность (более 75%), токопроводящие полы и температура выше плюс 30 °С.

Особо опасными являются помещения с влажностью, близкой к 100%, с химически активной средой и т.п.

Токопроводящими считаются грязные или сырые деревянные, бетонные, железобетонные полы или полы из металлических плит. К непроводящим относятся сухие и чистые деревянные полы.

Безопасные условия эксплуатации электротехнических устройств обеспечиваются рядом мероприятий, предусмотренных техникой безопасности. Основными из них являются:

а) защита с помощью соответствующих ограждений всех токоведущих частей;

б) сооружение защитного заземления или зануления элементов оборудования, нормально не находящихся под напряжением, но могущих в аварийных случаях попасть под напряжение;

в) применение изолирующих подставок, резиновых рукавиц и бот, изолирующих штанг и т.п.

 

14.2 Защитное заземление

Защитное заземление (33) предназначено для того, чтобы снизить значение напряжения на корпусах заземленного электрооборудования до уровня, безопасного для человека.

Защитное заземление применяется в случае, когда заводские сети трехфазного тока бывают трехпроводными, т.е. при отсутствии нейтрального провода. При этом нейтраль N трансформатора трехпроводной сети изолирована (не соединена с землей) (рис. 14.1).

На рисунке 14.1 изображены производственный механизм (ПМ) 1, двигатель 2, прикрепленный с помощью фланца к механизму, заводская трехфазная сеть 3 и емкости СА, СВ, и СС между каждым из линейных проводов сети и землей.

Провод сети и земля играют роль обкладок конденсатора, между которыми находится изолятор (воздух).

При значительной протяженности заводской сети, емкости СА, СВ, и СС оказываются значительными, а емкостное сопротивление  – соизмеримым с сопротивлением Rч тела человека.

В нормальных условиях все токоведущие части ПМ и двигателя изолированы от металлического корпуса и соприкосновение человека с ПМ не представляет опасности.

Однако в случае пробоя изоляции электрический провод соединится с корпусом ПМ и человек, коснувшийся этого корпуса, окажется соединенным с одним из проводов электрической сети (рис. 14.1, с проводом А). В результате этого образуется замкнутый контур (рис. 14.1, фаза А – Rчземля – СВ – фаза В), сила тока в котором в основном зависит от изоляции между ногами человека и землей. Если пол влажный и хорошо соединен с землей, то человек окажется под линейным напряжением Uл (рис. 14.1, напряжение UАВ), под действием которого по человеку протечет ток

где R – сопротивление пола и других элементов, соединенных последовательно с телом человека, Ом.

В результате человек может быть поражен током.

Для устранения такой опасности корпус ПМ надежно соединяют с землей – заземляют (рис. 14.1,б).

Заземлитель 3 уложен в земле и имеет с ней хороший контакт. В этом случае тело человека и заземлитель оказываются включенными параллельно.

1

Рис. 14.1. Схемы электрической цепи при пробое изоляции и попадании человека под напряжение при отсутствии заземления (а) и при наличии заземления (б) 

 

При выполнении заземления добиваются, чтобы его сопротивление Rз было во много раз меньше внутреннего сопротивления источника. Обычно Rз составляет 0,5... 10 Ом в зависимости от уровня напряжения и мощности источника питания.

При возникновении однофазных замыканий на корпус источник питания работает в режиме короткого замыкания и по нему и заземлителю протекает большой ток Iкз, что приводит к значительному падению напряжения на внутреннем сопротивлении источника и напряжения на зажимах источника, а следовательно, на корпусах оборудования снижается до безопасного уровня в соответствии с законом Ома для полной цепи:

где  – комплекс напряжения на зажимах источника, В;

 – комплексное значение ЭДС источника, В;

 – внутреннее сопротивление источника, Ом;

 – комплекс тока короткого замыкания на землю, А.

 

14.3 Зануление

Зануление выполняется в четырехпроводной системе трехфазного тока и имеет ту же цель, что и заземление.

Зануление корпусов оборудования производится путем их присоединения к нейтральному проводу.

Пробой изоляции в этом случае приводит к короткому замыканию, что вызывает сгорание плавких предохранителей и отключение поврежденного участка.

Зануление и заземление обязательно во всех производственных помещениях, где напряжение 127 В и выше, за исключением сухих конторских помещений с деревянным полом, где заземление и зануление обязательно лишь при напряжении 380 В и выше.

Заземлению и занулению подлежат корпуса двигателей, станины станков, конструкции распределительных устройств, осветительная арматура, корпуса и магнитопроводы трансформаторов и т.п.

 

14.4 Конструкция заземлителя

Устройство заземляющего устройства (ЗУ) определяется удельным сопротивлением грунта и геометрическими размерами заземлителя.

ЗУ, состоящее из одиночного заземлителя, имеет значительное сопротивление и неблагоприятный характер распределения напряженности электрического поля в зоне растекания тока короткого замыкания, поэтому ЗУ состоит из нескольких заземлителей. При этом общее сопротивление ЗУ снижается и определяется по формуле

где Rоз сопротивление одиночного заземлителя, Ом;

п – число заземлителей;

η – коэффициент использования заземлителей, определяемый по графикам и таблицам в зависимости от конструкции ЗУ.

При расчете ЗУ необходимо знать удельное сопротивление грунта в том месте, где будет проходить заземляющая линия и где заложены заземлители. На нефтяных промыслах, например, грунт может оказаться пропитанным нефтью, в результате чего его удельное сопротивление резко возрастает и необходимое сопротивление ЗУ 4... 10 Ом получить трудно. В таких случаях забивают заземлители в более глубокие слои грунта, не пропитанные нефтью, или относят их в другое, более отдаленное, место. Аналогичные меры применяют в районах со скалистым грунтом, в районах вечной мерзлоты и т.п.

При сооружении ЗУ необходимо максимально использовать имеющиеся естественные заземлители: металлические конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей, проложенных в земле; обсадные трубы; водопроводные и другие металлические трубопроводы (кроме трубопроводов горючих жидкостей, горячей воды, а также горючих или взрывчатых газов и т.д.).

В качестве искусственных заземлителей рекомендуется применять вертикальные стальные трубы либо горизонтально проложенные стальные полосы. Стальные трубы диаметром 38...50 мм, длиной 2...3 м и толщиной стенок не менее 3,5 мм забивают в землю на глубину от поверхности земли до верхнего конца трубы 0,5...0,8 м. Для уменьшения взаимного экранирования труб их следует располагать на расстоянии друг от друга не менее одной длины трубы. Вместо труб допускается использовать круглую сталь диаметром не менее 25 мм или уголковую сталь 20 · 30 · 3 мм.

Для создания полосовых заземлителей применяют стальные полосы шириной 20...40 мм и толщиной не менее 4 мм, укладываемые в траншеи глубиной 0,5...0,8 м. Такие же полосы применяют для соединения друг с другом трубчатых заземлителей. Полосы соединяют между собой и с трубами заземлителей сваркой.

Каждый заземляемый элемент установки присоединяют к ЗУ или заземляющей магистрали при помощи отдельного ответвления.

Последовательное включение в заземляющий провод нескольких заземляемых участков не допускается, т.к. при таком соединении в случае обрыва заземляющего ответвления все заземляемые участки окажутся не-заземленными.

Площадь сечения заземляющих проводников должна удовлетворять требованиям Правил устройства электроустановок (обычно не менее 24 мм2).

 


 

ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ

-      подвести итоги занятия;

-      напомнить тему, цели и учебные вопросы;

-      объявить оценки;

-      ответить на вопросы;

-      отметить активность и дисциплину на занятии;

-      дать задание на самоподготовку.

 


Список используемой литературы

1.       Славинский, А. К. Электротехника с основами электроники : учебное пособие / А. К. Славинский, И. С. Туревский. — Москва : ФОРУМ : ИНФРА-М, 2020. — 448 с.

2.       Маркелов, С. Н. Электротехника и электроника : учебное пособие / С.Н. Маркелов, Б.Я. Сазанов. — Москва : ИНФРА-М, 2020. — 267 с.

 


 

Методическая разработка по

Методическая разработка по

Цель занятия: 1. Изучить тему

Цель занятия: 1. Изучить тему

Содержание занятия Вступительная часть – принять рапорт дежурного по группе; – проверить наличие студентов и их готовность к занятию; – ответить на вопросы, которые возникли…

Содержание занятия Вступительная часть – принять рапорт дежурного по группе; – проверить наличие студентов и их готовность к занятию; – ответить на вопросы, которые возникли…

ЭЛЕКТРОБЕЗОПАСНОСТЬ 14.1 Общие сведения

ЭЛЕКТРОБЕЗОПАСНОСТЬ 14.1 Общие сведения

На практике в наиболее тяжелых условиях можно считать безопас ным напряжение ниже 12

На практике в наиболее тяжелых условиях можно считать безопас ным напряжение ниже 12

Защитное заземление (33) предназначено для того, чтобы снизить значение напряжения на корпусах заземленного электрооборудования до уровня, безопасного для человека

Защитное заземление (33) предназначено для того, чтобы снизить значение напряжения на корпусах заземленного электрооборудования до уровня, безопасного для человека

U АВ ), под действием которого по человеку протечет ток где

U АВ ), под действием которого по человеку протечет ток где

R з составляет 0,5... 10 Ом в зависимости от уровня напряжения и мощности источника питания

R з составляет 0,5... 10 Ом в зависимости от уровня напряжения и мощности источника питания

В и выше. Заземлению и занулению подлежат корпуса двигателей, станины станков, конструкции распределительных устройств, осветительная арматура, корпуса и магнитопроводы трансформаторов и т

В и выше. Заземлению и занулению подлежат корпуса двигателей, станины станков, конструкции распределительных устройств, осветительная арматура, корпуса и магнитопроводы трансформаторов и т

При сооружении ЗУ необходимо максимально использовать имеющиеся естественные заземлители: металлические конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей, проложенных в земле; обсадные…

При сооружении ЗУ необходимо максимально использовать имеющиеся естественные заземлители: металлические конструкции зданий и сооружений, имеющие соединения с землей; свинцовые оболочки кабелей, проложенных в земле; обсадные…

Площадь сечения заземляющих проводников должна удовлетворять требованиям

Площадь сечения заземляющих проводников должна удовлетворять требованиям

ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ - подвести итоги занятия; - напомнить тему, цели и учебные вопросы; - объявить оценки; - ответить на вопросы; - отметить активность и дисциплину…

ЗАКЛЮЧИТЕЛЬНАЯ ЧАСТЬ - подвести итоги занятия; - напомнить тему, цели и учебные вопросы; - объявить оценки; - ответить на вопросы; - отметить активность и дисциплину…

Список используемой литературы 1

Список используемой литературы 1
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
05.06.2021