Публикация является частью публикации:
Определение: фигура, ограниченная графиком непрерывной и не меняющей своего знака на отрезке [a; b] функции, прямыми x=a, x=b и отрезком [a; b] называется криволинейной трапецией.
© Комаров Р.А.
Вычислите площадь криволинейной трапеции 2-мя способами
1) Используя формулу площади
трапеции из геометрии, получим:
2) Найдите F(x) и вычислите
S по формуле S=F(b)-F(a)
© Комаров Р.А.
Теорема:Если f – непрерывная и неотрицательная на отрезке [a; b] функция, а F – ее первообразная на этом отрезке, то площадь S соответствующей криволинейной трапеции равна приращению первообразной на отрезке [a; b], т.е. S=F(b)-F(a).
Дано: f – функция непрерывная, неотрицательная на отрезке [a; b]
криволинейная трапеция
Док-ть: S=F(b)-F(a)
© Комаров Р.А.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.