Задание 1
Логическая функция F задаётся выражением z ∧ ¬y ∧ (w → x). Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F. Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут
соответствующие им столбцы (сначала буква, соответствующая первому столбцу;
затем буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите
подряд, никаких разделителей между буквами ставить не нужно. Пример. Пусть
задано выражение x → y, зависящее от двух переменных x и y, и фрагмент
таблицы истинности:
Тогда первому столбцу соответствует переменная y, а второму столбцу
соответствует переменная x. В ответе нужно написать: yx.
Задание 2
Логическая функция F задаётся выражением (x ∧ ¬y)
∨ (y ≡ z) ∨ w.
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки
таблицы истинности функции F. Определите, какому столбцу таблицы истинности
соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y,
и фрагмент таблицы истинности:
Тогда первому столбцу соответствует переменная y, а второму столбцу
соответствует переменная x. В ответе нужно написать: yx.
Решение:
Задание1
Видим, что у функции основным действием является логическое умножение. По таблице видно, что функция имеет значение только 1 . Логическое умножение даёт 1 (единицу) тогда, когда каждое выражение равно 1 (единице). Значит каждое выражение в нашей функции должно равняться единице.
Отсюда видно, что переменная z должна всегда быть равна 1 (единице). Это первый столбец. Отрицание y тоже должно быть 1 (единицей), тогда просто y всегда будет 0 (нулём). Это второй столбец.
Осталось определить положение w и x. Здесь делаем предположение, что в третьем столбце стоит w, а в 4-ом x. Проверяем построчно и видим, что во второй строчке при таком расположении из 1 следует 0, что в итоге приводит выражение (w → x) в 0, а у нас это выражение всегда должно быть 1 (единицей). Значит, мы предположение сделали неверное, и получается x - это третий столбец, а w - четвёртый.
Ответ: zyxw
Решение:
Определяем главную логическую операцию ("главную скрипку"),
которая соединяет разные выражения. Видим, что это логическое сложение.
Во всех строчках таблицы функция принимает значение 0 (ноль). Значит, и каждое
выражение должно принимать значение 0 (ноль).
Самым слабым звеном является
переменная w, потому что она стоит одна. Переменная w должна
равняться всегда 0(нулю) - этому условию может удовлетворить только третий
столбец. Значит w стоит на третьем месте.
Следующим слабым звеном является равносильность. Она должна "выдавать" 0 (ноль). Равносильность "выдаёт" 0 (ноль), когда переменные разные!
Проанализируем первый и второй столбец. В третьей строчке, и там, и там, стоит 1 (единица). Значит, первый и второй столбец не могут быть одновременно y и z (или z и y).
Рассмотрим второй и четвёртый столбец. Вторая строчка содержит одинаковое значение 0 (ноль), и там, и там. Значит, второй и четвёртый столбец не могут быть одновременно y и z (или z и y).
Таким образом, y и z (или z и y) будут столбцы первый и четвёртый! И теперь можно расставить недостающие значения в этих столбцах. Расставляем, чтобы были разные значения, а второй столбец получается x.
Осталось разобраться с z и y. Обратимся к первому выражению (x ∧ ¬y) и посмотрим на третью строчку. Если в четвёртом столбце будет стоять y, то отрицание на y превратит ноль(ноль) в 1(единицу) в четвёртой строчке. Тогда окажется, что у x - 1 и ¬y - 1, и выражение (x ∧ ¬y) тоже получится 1(единицей). А у нас каждое выражение должно равняться 0(нулю). Получается y будет стоять в первом столбце, а z в четвёртом.
Тогда ответ будет равен yxwz.
Ответ: yxwz
Задача (Количество чисел)
Какое количество натуральных чисел удовлетворяет логическому условию:
¬(X2 ≥ 9) ∨ ¬((X < 7) ∨ (X ≥ 10)) ?
Задача (Наибольшее число)
Для какого наибольшего целого неотрицательного числа A выражение
(x ≥ A) ∨ (y ≥ A) ∨ (x * y ≤ 205)
тождественно истинно, т.е. принимает значение 1 при любых целых положительных x и y ?
Задача (Наибольшее число + формула де Моргана)
Для какого наибольшего целого неотрицательного числа A выражение
(x < A) ∧ (y < A) ∧ (x * y > 603)
тождественно ложно, т.е. принимает значение 0 при любых целых положительных x и y ?
Задача (Наименьшее число)
Для какого наименьшего целого числа A формула
(3 * x + y < A) ∨ (x < y) ∨ (16 ≤ x)
тождественно истинна, т.е. принимает значение 1 при любых целых неотрицательных x и y ?
© ООО «Знанио»
С вами с 2009 года.