1 вариант
а) 6х2 – х + 4 = 0
б) 12х - х2 = 0
в) 8 + 5х2 = 0
2 вариант
а) х – 6х2 = 0
б) - х + х2 – 15 = 0
в) - 9х2 + 3 = 0
1 вариант
а) а = 6, в = -1, с = 4;
б) а = -1, в = 12, с = 0;
в) а = 5, в = 0, с = 8;
2 вариант
а) а = -6, в =1, с = 0;
б) а = 1, в =-1, с = -15;
в) а = -9, в = 0, с = 3.
Определите коэффициенты
квадратного уравнения:
РЕШЕНИЕ
НЕПОЛНЫХ КВАДРАТНЫХ УРАВНЕНИЙ
в=0
ах2+с=0
с=0
ах2+вх=0
в,с=0
ах2=0
1.Перенос с в правую часть уравнения.
ах2= -с
2.Деление обеих частей уравнения на а.
х2= -с/а
3.Если –с/а>0 -два решения:
х1 = и х2 = -
Если –с/а<0 - нет решений
Вынесение х за скобки:
х(ах + в) = 0
2. Разбиение уравнения
на два равносильных:
х=0 и ах + в = 0
3. Два решения:
х = 0 и х = -в/а
1.Деление обеих частей уравнения на а.
х2 = 0
2.Одно решение: х = 0.
Проверь товарища
1 вариант
а) х(2+3х)=0,
х=0 или 2+3х =0,
3х = -2,
х= -2/3.
Ответ: 0 и -2/3.
б) 3х2 = 243,
х2 = 243/3,
х2 = 81,
х =-9, х= 9.
Ответ: -9 и 9.
в) 6х2 = - 10х -10х + 6х2,
6х2 +10х +10х - 6х2 =0,
20х = 0,
х=0.
Ответ: 0.
2 вариант
а) х(3х -2) =0,
х=0 или 3х-2 =0,
3х = 2,
х = 2/3.
Ответ: 0 и 2/3.
б) - 5х2 = - 125,
х2 = -125/-5,
х2 = 25,
х = - 5, х = 5.
Ответ: -5 и 5.
в) - 12х -12х +18 х2 - 18 х2 = 0,
- 24х = 0,
х = 0.
Ответ: 0.
Динамическая пауза
а) 3х2 – 5х - 2 = 0
б) 4х2 – 4х + 1= 0
в) х2 – 2х +3 = 0
г) 6х2 – х + 4 = 0
д) 12х - х2 = 0
е) 8 + 5х2 = 0
ж) 5х2 – 4х + 2 = 0
з) 4х2 – 3х -1= 0
и) х2 – 6х + 9= 0
к) х – 6х2 = 0
л) - х + х2 – 15 = 0
м) - 9х2 + 3 = 0
Вычисли дискриминант и определи количество корней квадратного уравнения
1 вариант
а) 3х2 – 5х - 2 = 0
б) 4х2 – 4х + 1= 0
в) х2 – 2х +3 = 0
2 вариант
а) 5х2 – 4х + 2 = 0
б) 4х2 – 3х -1= 0
в) х2 – 6х + 9= 0
Исторические сведения:
Квадратные уравнения впервые встречаются в работе индийского математика и астронома Ариабхатты.
Другой индийский ученый Брахмагупта (VII в) изложил общее правило решения квадратных уравнений, которое практически совпадает с современным.
В Древней Индии были распространены публичные соревнования в решении трудных задач. Задачи часто облекались в стихотворную форму.
________________________________________________
Вот задача Бхаскары:
Обезьянок резвых стая, всласть поевши, развлекалась.
Их в квадрате часть восьмая на полянке забавлялась.
А двенадцать по лианам стали прыгать, повисая.
Сколько ж было обезьянок, ты скажи мне, в этой стае?
Решение задачи Бхаскары:Пусть было х обезьянок, тогда на поляне забавлялось – ( х/8)2 и 12 прыгали по лианам.Составим уравнение:
( х/8)2 + 12 = х,
х2/64 + 12 – х =0, /*64
х2 - 64х + 768 = 0,
D = (-64)2-4*1*768 =4096 – 3072 = 1024 = 322, 2 корня
х= (64 -32)/2 = 16,
х= (64 + 32)/2 = 48.
Ответ: 16 или 48 обезьянок.
© ООО «Знанио»
С вами с 2009 года.