Презентация к уроку геометрии "Сумма углов треугольника и многоугольника. Внешние углы треугольника." (7 класс)
Оценка 4.7

Презентация к уроку геометрии "Сумма углов треугольника и многоугольника. Внешние углы треугольника." (7 класс)

Оценка 4.7
pptx
28.01.2023
Презентация к уроку геометрии "Сумма углов треугольника и многоугольника. Внешние углы треугольника." (7 класс)
Сумма углов треугольника.pptx

Сумма углов треугольника и многоугольника

Сумма углов треугольника и многоугольника

Сумма углов треугольника и многоугольника. Внешние углы треугольника.

Подготовила:
учитель математики
МБОУ Г.ГОРЛОВКИ «ШКОЛА № 42»
Рыбина М.В.

Ранее, на уроках математики, вы познакомились с различными геометрическими фигурами, в том числе и с треугольниками

Ранее, на уроках математики, вы познакомились с различными геометрическими фигурами, в том числе и с треугольниками

Ранее, на уроках математики, вы познакомились с различными геометрическими фигурами, в том числе и с треугольниками. Давайте повторим, что мы знаем о треугольниках.
Блиц – опрос
1. Что называется треугольником?
2. Какие бывают треугольники в зависимости от сторон?
3. Какой треугольник называется равнобедренным?
4. Какой треугольник называется равносторонним?
5. Что называется медианой?
6. Что называется биссектрисой?
7. Что называется высотой?
8. Сформулируйте первый признак равенства треугольников.
9. Сформулируйте второй признак равенства треугольников.
10. Сформулируйте третий признак равенства треугольников.



Сегодня мы продолжим изучать треугольники и рассмотрим одну из важнейших теорем геометрии– теорему о сумме углов треугольника

Сегодня мы продолжим изучать треугольники и рассмотрим одну из важнейших теорем геометрии– теорему о сумме углов треугольника

Сегодня мы продолжим изучать треугольники и рассмотрим одну из важнейших теорем геометрии– теорему о сумме углов треугольника.
Сформулируем эту теорему.
Сумма углов треугольника равна 180°.
Дано: ∆АВС.
Доказать:
∠А+∠В +∠С = 180º
Доказательство:

Проведем через вершину В прямую а ║АС.
∠1 = ∠4 (накрест лежащие углы при а ║АС и секущей АВ),
∠3 = ∠5 (накрест лежащие углы при а ║АС и секущей ВС)→
∠4 + ∠2 + ∠5 = 180° (по свойству развёрнутого угла) → ∠1 + ∠2 + ∠3 = 180° → ∠А + ∠В + ∠С = 180°.
Что и требовалось доказать.

Теперь введём ещё одно понятие, связанное с треугольниками – внешний угол треугольника

Теперь введём ещё одно понятие, связанное с треугольниками – внешний угол треугольника

Теперь введём ещё одно понятие, связанное с треугольниками –внешний угол треугольника. Это угол, смежный с каким-либо углом этого треугольника.
Докажем, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Дано: ∆АВС.
Доказать: ∠4 = ∠1 + ∠2.
Доказательство
∠3 + ∠4 = 180° (по свойству развёрнутого угла или смежных углов).
∠3 + (∠2 + ∠1) = 180° (по теореме о сумме углов треугольника) → ∠4 = ∠2 + ∠1.
Что и требовалось доказать.

ВЫВОД: 1. Если один из углов треугольника равен 90 градусам или больше 90 градусов, то остальные два угла будут острые, т

ВЫВОД: 1. Если один из углов треугольника равен 90 градусам или больше 90 градусов, то остальные два угла будут острые, т

ВЫВОД:
1. Если один из углов треугольника равен 90 градусам или больше 90 градусов, то остальные два угла будут острые, т.к. их сумма не должна превышать 90 градусов. 2. Поэтому, в любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.

Исходя из этого, можно классифицировать треугольники по углам

Исходя из этого, можно классифицировать треугольники по углам

Исходя из этого, можно классифицировать треугольники по углам.
По углам треугольник может быть:
‑ остроугольным, если все его углы являются острыми (т.е. меньше 90°);
‑ тупоугольным, если один из его углов тупой (т.е. больше 90°);
‑ прямоугольным, если один угол 90° (т.е. прямой).

В прямоугольном треугольнике стороны имеют свои названия

В прямоугольном треугольнике стороны имеют свои названия

В прямоугольном треугольнике стороны имеют свои названия.
Сторона треугольника, лежащая напротив прямого угла, называется гипотенузой, а две другие – катетами.
∆АВС– прямоугольный.
∠В = 90°.
АС – гипотенуза.
АВ,ВС – катеты.

Сумма двух острых углов прямоугольного треугольника равна 90º

Сумма двух острых углов прямоугольного треугольника равна 90º

Сумма двух острых углов прямоугольного треугольника равна 90º.

Дано:
∆АВС – прямоугольный, ∠В = 90°.
Доказать: ∠А +∠С = 90°.
Доказательство:
∠А +∠С + ∠В = 180° (по теореме о сумме углов треугольника).
∠В = 90° (по определению прямоугольного треугольника) →∠А + ∠С + 90° = 180°
∠А + ∠С = 180 – 90° = 90°
Что и требовалось доказать.

В равностороннем треугольнике каждый угол равен 60 °

В равностороннем треугольнике каждый угол равен 60 °

В равностороннем треугольнике каждый угол равен 60 °.

Дано:
∆АВС – равносторонний
Доказать: ∠А =∠С = ∠В = 60°.
Доказательство:
Так как треугольник АВС равносторонний:
АС = АВ = ВС (по определению равностороннего треугольника) →
если АС = АВ → ∠С = ∠В (по свойству равнобедренного треугольника).
Аналогично, если АС = СВ → ∠А = ∠В (по свойству равнобедренного треугольника) →
∠А = ∠С = ∠В.
∠А + ∠С + ∠В = 180° (по теореме о сумме углов треугольника).
∠А = ∠С = ∠В = 180° : 3 = 60°.
Что и требовалось доказать.

Задача 1 Чему равна градусная мера угла

Задача 1 Чему равна градусная мера угла

Задача 1

Чему равна градусная мера угла А, если треугольник АВС прямоугольный?
Дано: АВС – прямоугольный, С = 90,В = 45
Найти: А
Решение:
По условию, ∆АВС – прямоугольный → сумма его острых углов равна 90°.
∠А+∠В=90°
∠В = 45° (по рисунку) →∠А + 45° = 90°.
∠А=90° – 45° = 45°.
Ответ: ∠А = 45°.

Задача 2 По рисунку найдите угол

Задача 2 По рисунку найдите угол

Задача 2

По рисунку найдите угол N треугольника FNA.
Дано:  FNA, F = 60,NAP=140
Найти:  N
Решение:
По рисунку ∠NAP= 140°, этот угол внешний к углу А треугольника FNA→
∠NAP = ∠N +∠F= 140° (т.к. внешний угол треугольника равен сумме двух углов треугольника не смежных с ним).
∠F = 60° (по рисунку).
∠N + 60° = 140°.
∠N = 140° – 60° = 80°.
Ответ:∠N = 80°.

Задача 3 Какова градусная мера угла

Задача 3 Какова градусная мера угла

Задача 3

Какова градусная мера угла А по рисунку?
Дано:  AВС, С = 70,В=50
Найти:  А
Решение:
С +В +  А = 180
А = 180 - С - В = 180-70-50 = 60
Ответ: 60

Задача 4 Чему равна градусная мера угла

Задача 4 Чему равна градусная мера угла

Задача 4

Чему равна градусная мера угла С, если треугольник АВС равнобедренный с основанием АВ и угол В = 15°?

ОТВЕТ: С = 150

Задача 5 По рисунку найдите градусную меру ∠C и ∠A

Задача 5 По рисунку найдите градусную меру ∠C и ∠A

Задача 5

По рисунку найдите градусную меру ∠C и ∠A.

ОТВЕТ: А = 70,С = 60

Задача 6 В равнобедренном треугольнике

Задача 6 В равнобедренном треугольнике

Задача 6

В равнобедренном треугольнике АВС с основанием АС и углом В, равным 68°, проведена высота АМ. Найдите угол МАС.

ОТВЕТ: МАС = 34

Задача 7 На рисунке изображены секущие

Задача 7 На рисунке изображены секущие

Задача 7

На рисунке изображены секущие МР и МЕ к параллельным прямым а и b. Установите соответствие между углами и их градусными мерами, если
∠3 = 110°, а ∠1 = ∠2 и РМ = РЕ.

Домашнее задание: Выучить определения и формулировки теорем § 1, п

Домашнее задание: Выучить определения и формулировки теорем § 1, п

Домашнее задание:

Выучить определения и формулировки теорем § 1, п.31, 32
Выполнить в тетради:№ 223 (а, б), 224

Успешного выполнения домашнего задания!

Успешного выполнения домашнего задания!

Успешного выполнения домашнего задания!

Использованные источники: https://www

Использованные источники: https://www

Использованные источники:

https://www.yaklass.ru/p/geometria/7-klass/sootnoshenie-mezhdu-storonami-i-uglami-treugolnika-9155/summa-uglov-treugolnika-vidy-treugolnikov-9171
https://resh.edu.ru/subject/lesson/7308/conspect/305627/
https://foxford.ru/wiki/matematika/summa-uglov-mnogougolnikov
https://www.evkova.org/treugolnik
https://uchitel.pro/свойства-сторон-и-углов-треугольника/




Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
28.01.2023