Презентация "Пирамида"
Оценка 4.8

Презентация "Пирамида"

Оценка 4.8
Презентации учебные
ppt
математика
10 кл
10.04.2021
Презентация "Пирамида"
Термин «пирамида» заимствован из греческого «пирамис» или «пирамидос». Греки в свою очередь позаимствовали это слово из египетского языка. В папирусе Ахмеса встречается слово «пирамис» в смысле ребра правильной пирамиды. Другие считают, что термин берет свое начало от формы хлебцев в Древней Греции («пирос» - рожь). В связи с тем, что форма пламени напоминает образ пирамиды, некоторые ученые считали, что термин происходит от греческого слова «пир» - огонь.
Пирамида.ppt

Пирамида Автор: Крылова А.В., учитель математики

Пирамида Автор: Крылова А.В., учитель математики

a2-в2=(a-в)(a+в)

(a-в)2=a2-2aв+в2

(a+в)2=a2+2aв+в2

(a+в)3=a3+3a2в+3aв2+в3

Пирамида

Автор: Крылова А.В.,
учитель математики
МБОУ «Видновская СОШ №2»
МО, г. Видное
2021

Из истории развития «Пирамида» - от греческого слова «пюрамис»

Из истории развития «Пирамида» - от греческого слова «пюрамис»

Из истории развития

«Пирамида» - от греческого слова «пюрамис»

Пирамиды в архитектуре

Пирамиды в архитектуре

Пирамиды в архитектуре

Определение Пирамида – это многогранник, составленный из n-угольника и n треугольников

Определение Пирамида – это многогранник, составленный из n-угольника и n треугольников

Определение

Пирамида – это многогранник, составленный из n-угольника и n треугольников

Элементы пирамиды Основание Грани

Элементы пирамиды Основание Грани

Элементы пирамиды

Основание
Грани
Ребра
Вершина
Высота

Пирамиды Правильная Неправильная

Пирамиды Правильная Неправильная

Пирамиды

Правильная

Неправильная

Правильная пирамида Пирамида называется правильной, если в основании лежит правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром её основания, является высотой пирамиды

Правильная пирамида Пирамида называется правильной, если в основании лежит правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром её основания, является высотой пирамиды

Правильная пирамида

Пирамида называется правильной, если в основании лежит правильный многоугольник, а отрезок, соединяющий вершину пирамиды с центром её основания, является высотой пирамиды.
Боковые ребра равны
Боковые грани – равные равнобедренные треугольники.

Апофема пирамиды Апофема правильной пирамиды высота ее боковой грани, проведенная из вершины

Апофема пирамиды Апофема правильной пирамиды высота ее боковой грани, проведенная из вершины

Апофема пирамиды

Апофема правильной пирамиды высота ее боковой грани, проведенная из вершины.

Площадь боковой поверхности пирамиды где

Площадь боковой поверхности пирамиды где

Площадь боковой поверхности пирамиды

где Pосн.– периметр основания,
l –апофема правильной пирамиды

Площадь полной поверхности пирамиды где

Площадь полной поверхности пирамиды где

Площадь полной поверхности пирамиды

где Sосн.– площадь основания

СПАСИБО ЗА ВНИМАНИЕ!

СПАСИБО ЗА ВНИМАНИЕ!

СПАСИБО ЗА ВНИМАНИЕ!

Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
10.04.2021