Комбинаторные задачи
Презентация подготовленаучителем математики
МОУ Константиновской СШДружковой М.Д.
Комбинаторика
– раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.
Комбинаторная задача –
это задача, требующая осуществления
перебора всех возможных вариантов
или подсчета их числа.
Решить комбинаторную задачу - это значит выписать все возможные комбинации, составленные из чисел, слов, предметов и др., отвечающих условию задачи.
Решение задачи методом полного перебора всех возможных вариантов
Задача 1: Прямоугольник состоит из трех квадратов. Сколькими способами можно раскрасить эти квадраты тремя красками: красной, зеленой и синей?
Задача 2 Сколько двузначных чисел можно составить, используя цифры 1; 4; 7? (цифры могут повторяться)
Решение: Для того, чтобы не пропустить и не повторить ни одного из чисел, будем выписывать их в порядке возрастания:
11;14;17;(начали с 1)
41;44;47;(начали с 4)
71;74;77;(начали с 7)
Таким образом, из трёх данных цифр можно составить всего 9 различных двузначных чисел.
Ответ: 9 чисел.
Решение задач с помощью дерева возможных вариантов
Существует более общий подход к решению самых разных комбинаторных задач с помощью составления специальных схем. Внешне такая схема напоминает дерево, отсюда название - дерево возможных вариантов.
При правильном построении дерева ни один из возможных вариантов решения не будет потерян.
Рассмотрим задачу 2 о составлении трехзначных чисел из цифр 1;4;7
(цифры в записи числа не повторяются)
Для её решения построим схему-дерево возможных вариантов.
число
Ответ: числа 147;
417; 471; 714; 741
174;
Задача 3. Сколько различных завтраков, состоящих из 1 напитка и 1 вида выпечки, можно составить из чая, кофе, булочки, печенья и вафель?
Задача 4. Запишите все двузначные числа, в записи которых используются только цифры 1; 2 и 3 (цифры могут повторяться)
Решение. Двузначное число
Первая цифра 1 2 3
Вторая цифра 1 2 3 1 2 3 1 2 3
Варианты числа: 11; 12; 13; 21; 22; 23; 31; 32; 33
Ответ: 9 чисел
Задача 5. У ослика Иа-Иа есть 3 надувных шарика: красный, зелёный и жёлтый. Он хочет подарить по одному шарику своим друзьям: Винни-Пуху, Пятачку и Кролику. Сколько есть вариантов у Иа-Иа?
Решение
друзья | шарики | ||
Винни-Пух | |||
| |||
|
Ответ: 6 вариантов
Правило умножения в комбинаторных задачах.
Для комбинаторной задачи с умножением можно построить дерево вариантов, но такое дерево строить станет намного сложнее, именно поэтому используется метод умножения, чтобы запись была короче.
Рассмотрим этот метод на примере одной задачи:
Задача 6. На обед в школьной столовой предлагается 2 вида супа, 3 вторых блюда и 4 разных сока. Сколько различных обедов можно составить по предложенному меню?
Оформление:
Суп - 2 способа
Вторые блюда - 3 способа
Сок - 4 способа
Решение: 2 x 3 x 4= 24
Ответ:
Можно составить 24 варианта различных обедов.
Перестановки в комбинаторных задачах.
В комбинаторике часто приходиться решать задачу о том, сколькими способами можно расположить в ряд или, как говорят математики, упорядочить все элементы некоторого множества. Каждое из таких расположений называют перестановкой.
Задача 7. Миша решил в воскресенье навестить дедушку, своего друга Петю и старшего брата Володю. В каком порядке он может организовать визиты? Сколько вариантов получилось ?
Здесь речь идет о числе перестановок, т.е. о выполнении трех визитов в разной последовательности.
Сначала Миша выбирает, к кому отправится в первую очередь – 3 способа, затем он идет в гости к кому – то из 2 оставшихся, ну а затем – к последнему.
3•2•1= 6 способов
Задача 8. В турнире участвуют четыре человека. Сколькими способами могут быть распределены места между ними?
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.