Комбинаторика
– раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.
Задача 2 Сколько двузначных чисел можно составить, используя цифры 1; 4; 7? (цифры могут повторяться)
Решение: Для того, чтобы не пропустить и не повторить ни одного из чисел, будем выписывать их в порядке возрастания:
11;14;17;(начали с 1)
41;44;47;(начали с 4)
71;74;77;(начали с 7)
Таким образом, из трёх данных цифр можно составить всего 9 различных двузначных чисел.
Ответ: 9 чисел.
Решение задач с помощью дерева возможных вариантов
Существует более общий подход к решению самых разных комбинаторных задач с помощью составления специальных схем. Внешне такая схема напоминает дерево, отсюда название - дерево возможных вариантов.
При правильном построении дерева ни один из возможных вариантов решения не будет потерян.
Рассмотрим задачу 2 о составлении трехзначных чисел из цифр 1;4;7
(цифры в записи числа не повторяются)
Для её решения построим схему-дерево возможных вариантов.
число
Ответ: числа 147;
417; 471; 714; 741
174;
Задача 4. Запишите все двузначные числа, в записи которых используются только цифры 1; 2 и 3 (цифры могут повторяться)
Решение. Двузначное число
Первая цифра 1 2 3
Вторая цифра 1 2 3 1 2 3 1 2 3
Варианты числа: 11; 12; 13; 21; 22; 23; 31; 32; 33
Ответ: 9 чисел
Задача 5. У ослика Иа-Иа есть 3 надувных шарика: красный, зелёный и жёлтый. Он хочет подарить по одному шарику своим друзьям: Винни-Пуху, Пятачку и Кролику. Сколько есть вариантов у Иа-Иа?
Решение
друзья | шарики | ||
Винни-Пух | |||
| |||
|
Ответ: 6 вариантов
Рассмотрим этот метод на примере одной задачи:
Задача 6. На обед в школьной столовой предлагается 2 вида супа, 3 вторых блюда и 4 разных сока. Сколько различных обедов можно составить по предложенному меню?
Рассуждение:
Первое блюдо можно выбрать 2 способами, для каждого вида супа можно выбрать второе блюдо из 3 предложенных, уже получается 6 вариантов , осталось выбрать напиток: для каждого из 6 полученных наборов существует 4 способа выбора напитка.
Ответ: 24 способа.
Перестановки в комбинаторных задачах.
В комбинаторике часто приходиться решать задачу о том, сколькими способами можно расположить в ряд или, как говорят математики, упорядочить все элементы некоторого множества. Каждое из таких расположений называют перестановкой.
Здесь речь идет о числе перестановок, т.е. о выполнении трех визитов в разной последовательности.
Сначала Миша выбирает, к кому отправится в первую очередь – 3 способа, затем он идет в гости к кому – то из 2 оставшихся, ну а затем – к последнему.
3•2•1= 6 способов
Задача 8. В турнире участвуют четыре человека. Сколькими способами могут быть распределены места между ними?
Решение.
Первое место может занять любой из 4 участников. При этом второе место может занять любой из трёх оставшихся, третье – любой из двух оставшихся, а на четвёртом месте остаётся последний участник.
Значит, места между участниками могут быть распределены следующим образом 4•3•2•1=24.
Ответ: 24 способами.
© ООО «Знанио»
С вами с 2009 года.