Понятие прямоугольной системы координат нам знакомо из курса алгебры – это две взаимно перпендикулярные прямые с началом отсчета, выбранным единичным отрезком. Коэффициенты разложения вектора определяются единственным образом.
Вектор начало которого совпадает с началом координат называется радиус – вектором. Координаты радиус-вектора совпадают с координатами конца вектора.
КООРДИНАТЫ
ВЕКТОРОВ
Подготовила: Крылова Алина
Викторовна учитель математики
МБОУ
«Видновская СОШ №2»
Московская область
Ленинский район
г. Видное
2019 год
Повторение
o Дайте определение вектора.
o Какой вектор называется нулевым?
o Длина вектора.
o Чему равна длина нулевого вектора?
o Какие векторы называются коллинеарными?
o Дайте определение равных векторов.
o Что значит «Вектор отложен от данной точки?
o Сколько векторов равных данному можно
отложить от данной точки?
Повторение
o В чем заключается правило треугольника сложения
двух векторов?
o В чем заключается правило параллелограмма
сложения двух векторов?
o Какой вектор называется разностью двух векторов?
o Какой вектор называется противоположным
данному?
o Какой вектор называется произведением данного
вектора на данное число ?
o Сформулируйте основные свойства умножения
вектора на число.
Координаты вектора
Определение
Единичные векторы – векторы, длины
которых равны единице.
Векторы i и j называются координатными
векторами.
Обозначение
Координаты вектора указываются в фигурных
скобках после обозначения вектора
Определить координаты
векторов
Определить координаты
векторов и построить их
Разложите вектор по
координатным векторам
Свойства координатных
векторов
Координаты вектора
Каждая координата суммы двух векторов или
более векторов равна сумме соответствующих
координат этих векторов.
Координаты вектора
Каждая координата разности двух векторов
равна разности соответствующих координат этих
векторов.
Координаты вектора
Каждая координата произведения вектора на
число равна произведению соответствующей
координаты на это число.
Математический диктант
Запишите разложение по координатным векторам
− 2
− 2
Выпишите координаты вектора с , если с =
+ .
Найдите координаты вектора , равного разности
3
3
Найдите координаты вектора
, если {4;−2}.
= 4
Найдите координаты вектора (cid:0) = (cid:0)
−4 (cid:0) , если
и , если {−5;0}, {0;−4}.
вектора (cid:0) {2; −1}.
−2−2−2−2−2−2−2−2−2−2−2−2−2
векторов
3 3 3 3 3 3 3 3 3 3 3 3 3
=4 =4
(cid:0) {3; −2}, (cid:0) {2; −3}.
Постройте вектор (cid:0) { −3;1} с началом в точке О.
Домашнее задание
п.87; вопросы 1 – 3 (стр.224)
№ 921(в, г), № 922(в, г) , № 923(в, г),
№924(в, г), №926