Тест
1. Если точки М и N - середины рёбер AD и DC тетраэдра DACB, то неверным является утверждение:
прямые МN и AC – параллельные
прямые MN и DC – пересекающиеся
прямые MN и AD – скрещивающиеся
прямые MN и DB – скрещивающиеся
2. Из данных утверждений верным является:
если прямые не имеют общих точек, то они параллельны
если прямые параллельны, то они не имеют общих точек
если две прямые параллельны одной и той же плоскости, то они -параллельны
если две прямые перпендикулярны одной и той же прямой, то они – параллельны
3. ABCDA1D1C1D1 - куб, О - точка пересечения диагоналей грани ABCD. Линейным углом двугранного угла ВАСВ1 является
В1ВО
B1OB
В1ОА
угол не обозначен
ABCD - прямоугольник. Отрезок ВО перпендикулярен плоскости ABC.
Расстояние от точки О до прямой DC
равно длине отрезка
ОВ
OD
ОС
ВС
В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60⁰. Найдите боковое ребро пирамиды.
Уровень 2
Задача 2
Домашнее задание
Повторить теорию
Задачи:
1уровень. Сторона основания правильной треугольной призмы равна 6 см, а диагональ боковой грани 10 см. Найдите площадь боковой и полной поверхности призмы.
2уровень. DABC – пирамида, ∆ АВС – правильный, со стороной 6 см. DA ⊥ АВС, двугранный угол DBCA равен 30⁰. Найдите площадь боковой поверхности пирамиды.
Тесты http://geometry.far.ru/var1.php
Задание 8 № 27062. Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10.
© ООО «Знанио»
С вами с 2009 года.