Программа элективного курса «Решение задач с параметрами» (подготовка к ЕГЭ)

  • docx
  • 27.04.2025
Публикация на сайте для учителей

Публикация педагогических разработок

Бесплатное участие. Свидетельство автора сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала sbornik_tekstovyh_zadach_dlya_podgotovki_k_oge_po_matematike.docx

Сборник текстовых задач для подготовки к ОГЭ по математике

 

Задачи на движение

1.            За 20 минут ве­ло­си­пе­дист про­ехал 7 ки­ло­мет­ров. Сколь­ко ки­ло­мет­ров он про­едет за 35 минут, если будет ехать с той же ско­ро­стью?

2.            Из пунк­тов А и В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышли од­но­вре­мен­но нав­стре­чу друг другу два пе­ше­хо­да и встре­ти­лись в 9 км от А. Най­ди­те ско­рость пешехода, шед­ше­го из А, если известно, что он шёл со скоростью, на 1 км/ч большей, чем пешеход, шед­ший из В, и сде­лал в пути по­лу­ча­со­вую остановку.

3.            Из пунк­та А в пункт В, рас­сто­я­ние между ко­то­ры­ми 19 км, вышел пешеход. Через пол­ча­са нав­стре­чу ему из пунк­та В вышел ту­рист и встре­тил пе­ше­хо­да в 9 км от В. Ту­рист шёл со скоростью, на 1 км/ч большей, чем пешеход. Най­ди­те ско­рость пешехода, шед­ше­го из А.

4.            Расстояние между го­ро­да­ми А и В равно 375 км. Город С на­хо­дит­ся между го­ро­да­ми А и В. Из го­ро­да А в город В вы­ехал автомобиль, а через 1 час 30 минут сле­дом за ним со ско­ро­стью 75 км/ч вы­ехал мотоциклист, до­гнал ав­то­мо­биль в го­ро­де С и по­вер­нул обратно. Когда он вер­нул­ся в А, ав­то­мо­биль при­был в В. Най­ди­те рас­сто­я­ние от А до С.

5.            Расстояние между го­ро­да­ми А и В равно 750 км. Из го­ро­да А в город В со ско­ро­стью 50 км/ч вы­ехал пер­вый автомобиль, а через три часа после этого нав­стре­чу ему из го­ро­да В вы­ехал со ско­ро­стью 70 км/ч вто­рой автомобиль. На каком рас­сто­я­нии от го­ро­да А ав­то­мо­би­ли встретятся?

6.            Железнодорожный со­став дли­ной в 1 км прошёл бы мимо стол­ба за 1 мин., а через тун­нель (от входа ло­ко­мо­ти­ва до вы­хо­да по­след­не­го вагона) при той же скорости — за 3 мин. Ка­ко­ва длина тун­не­ля (в км)?

7.            Рыболов в 5 часов утра на мо­тор­ной лодке от­пра­вил­ся от при­ста­ни про­тив те­че­ния реки, через не­ко­то­рое время бро­сил якорь, 2 часа ловил рыбу и вер­нул­ся об­рат­но в 10 часов утра того же дня. На какое рас­сто­я­ние от при­ста­ни он отдалился, если ско­рость реки равна 2 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч.

8.            Ту­ри­сты про­плы­ли на лодке от ла­ге­ря не­ко­то­рое рас­сто­я­ние вверх по те­че­нию реки, затем при­ча­ли­ли к бе­ре­гу и, по­гу­ляв 2 часа, вер­ну­лись об­рат­но через 6 часов от на­ча­ла пу­те­ше­ствия. На какое рас­сто­я­ние от ла­ге­ря они от­плы­ли, если ско­рость те­че­ния реки равна 3 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

9.            Ры­бо­лов про­плыл на лодке от при­ста­ни не­ко­то­рое рас­сто­я­ние вверх по те­че­нию реки, затем бро­сил якорь, 2 часа ловил рыбу и вер­нул­ся об­рат­но через 5 часов от на­ча­ла пу­те­ше­ствия. На какое рас­сто­я­ние от при­ста­ни он от­плыл, если ско­рость те­че­ния реки равна 2 км/ч, а соб­ствен­ная ско­рость лодки 6 км/ч?

10.        Катер прошёл от одной при­ста­ни до дру­гой, рас­сто­я­ние между ко­то­ры­ми по реке равно 48 км, сде­лал сто­ян­ку на 20 мин и вер­нул­ся об­рат­но через  после на­ча­ла по­езд­ки. Най­ди­те ско­рость те­че­ния реки, если из­вест­но, что ско­рость ка­те­ра в сто­я­чей воде равна 20 км/ч.

Задачи на совместную работу

1.            Два оператора, ра­бо­тая вместе, могут на­брать текст га­зе­ты объ­яв­ле­ний за 8 ч. Если пер­вый опе­ра­тор будет ра­бо­тать 3 ч, а вто­рой 12 ч, то они вы­пол­нят толь­ко 75% всей работы. За какое время может на­брать весь текст каж­дый оператор, ра­бо­тая отдельно?

2.            На из­го­тов­ле­ние 231 де­та­ли уче­ник тра­тит на 11 часов больше, чем ма­стер на из­го­тов­ле­ние 462 таких же деталей. Известно, что уче­ник за час де­ла­ет на 4 де­та­ли меньше, чем мастер. Сколь­ко де­та­лей в час де­ла­ет ученик?

3.            Что бы на­ка­чать в бак 117 л воды, тре­бу­ет­ся на 5 минут боль­ше времени, чем на то, чтобы вы­ка­чать из него 96 л воды. За одну ми­ну­ту можно вы­ка­чать на 3 л воды больше, чем накачать. Сколь­ко лит­ров воды на­ка­чи­ва­ет­ся в бак за минуту?

4.            Дима и Саша вы­пол­ня­ют оди­на­ко­вый тест. Дима от­ве­ча­ет за час на 12 во­про­сов теста, а Саша — на 22. Они од­но­вре­мен­но на­ча­ли от­ве­чать на во­про­сы теста, и Дима за­кон­чил свой тест позже Саши на 75 минут. Сколь­ко во­про­сов со­дер­жит тест?

5.            Две трубы на­пол­ня­ют бас­сейн за 8 часов 45 минут, а одна пер­вая труба на­пол­ня­ет бас­сейн за 21 час. За сколь­ко часов на­пол­ня­ет бас­сейн одна вто­рая труба?

6.            Первая труба про­пус­ка­ет на 2 литра воды в ми­ну­ту меньше, чем вторая. Сколь­ко лит­ров воды в ми­ну­ту про­пус­ка­ет вто­рая труба, если ре­зер­ву­ар объёмом 130 лит­ров она за­пол­ня­ет на 4 ми­ну­ты быстрее, чем пер­вая труба за­пол­ня­ет ре­зер­ву­ар объёмом 136 литров?

7.            Две трубы на­пол­ня­ют бас­сейн за 6 часов 18 минут, а одна пер­вая труба на­пол­ня­ет бас­сейн за 9 часов. За сколь­ко часов на­пол­ня­ет бас­сейн одна вто­рая труба?

8.            Пер­вый ра­бо­чий за час де­ла­ет на 10 де­та­лей боль­ше, чем вто­рой, и вы­пол­ня­ет заказ, со­сто­я­щий из 60 де­та­лей, на 3 часа быст­рее, чем вто­рой ра­бо­чий, вы­пол­ня­ю­щий такой же заказ. Сколь­ко де­та­лей в час де­ла­ет вто­рой ра­бо­чий?

9.            Игорь и Паша кра­сят забор за 20 часов. Паша и Во­ло­дя кра­сят этот же забор за 24 часа, а Во­ло­дя и Игорь — за 30 часов. За сколь­ко часов маль­чи­ки по­кра­сят забор, ра­бо­тая втроём?

10.        Три бри­га­ды из­го­то­ви­ли вме­сте 114 деталей. Известно, что вто­рая бри­га­да из­го­то­ви­ла де­та­лей в 3 раза больше, чем первая, и на 16 де­та­лей меньше, чем третья. На сколь­ко де­та­лей боль­ше из­го­то­ви­ла тре­тья бригада, чем первая.

 

Задачи на проценты, смеси и сплавы

1.            Смешав 60%−ый и 30%−ый рас­тво­ры кис­ло­ты и до­ба­вив 5 кг чи­стой воды, по­лу­чи­ли 20%−ый рас­твор кислоты. Если бы вме­сто 5 кг воды до­ба­ви­ли 5 кг 90%−го рас­тво­ра той же кислоты, то по­лу­чи­ли бы 70%−ый рас­твор кислоты. Сколь­ко ки­ло­грам­мов 60%−го рас­тво­ра ис­поль­зо­ва­ли для по­лу­че­ния смеси?

2.            Име­ет­ся два спла­ва с раз­ным со­дер­жа­ни­ем меди: в пер­вом со­дер­жит­ся 60%, а во вто­ром — 45% меди. В каком от­но­ше­нии надо взять пер­вый и вто­рой спла­вы, чтобы по­лу­чить из них новый сплав, со­дер­жа­щий 55% меди?

3.            При сме­ши­ва­нии пер­во­го рас­тво­ра кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 20%, и вто­ро­го рас­тво­ра этой же кис­ло­ты, кон­цен­тра­ция ко­то­ро­го 50%, по­лу­чи­ли рас­твор, со­дер­жа­щий 30% кис­ло­ты. В каком от­но­ше­нии были взяты пер­вый и вто­рой рас­тво­ры?

4.            Све­жие фрук­ты со­дер­жат 80% воды, а вы­су­шен­ные — 28%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 288 кг све­жих фрук­тов?

5.            Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

6.            Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе?

7.            Первый сплав со­дер­жит 5% меди, вто­рой — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 4 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го сплава.

8.            Свежие фрук­ты со­дер­жат 86 % воды, а вы­су­шен­ные — 23 %. Сколь­ко тре­бу­ет­ся све­жих фрук­тов для при­го­тов­ле­ния 72 кг вы­су­шен­ных фруктов?

9.            Сме­ша­ли не­ко­то­рое ко­ли­че­ство 21-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 95-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

10.        Све­жие фрук­ты со­дер­жат 93% воды, а вы­су­шен­ные — 16%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 252 кг све­жих фрук­тов?

 

 

 

 

Задачи на арифметические и геометрические прогрессии

1.            В пер­вом ряду ки­но­за­ла 30 мест, а в каж­дом сле­ду­ю­щем на 2 места больше, чем в предыдущем. Сколь­ко мест в ряду с но­ме­ром n?

2.             Дана ариф­ме­ти­че­ская прогрессия: 33; 25; 17; … Най­ди­те пер­вый от­ри­ца­тель­ный член этой прогрессии.

3.            Найдите сумму всех от­ри­ца­тель­ных чле­нов ариф­ме­ти­че­ской прогрессии: −8,6; −8,4; ...

4.            Какое наи­боль­шее число по­сле­до­ва­тель­ных на­ту­раль­ных чисел, на­чи­ная с 1, можно сло­жить, чтобы по­лу­чив­ша­я­ся сумма была мень­ше 528?

5.            Най­ди­те сумму всех по­ло­жи­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии 11,2; 10,8; …

6.            Какое наи­мень­шее число по­сле­до­ва­тель­ных на­ту­раль­ных чисел, на­чи­ная с 1, нужно сло­жить, чтобы по­лу­чив­ша­я­ся сумма была боль­ше 465?

7.            Най­ди­те сумму всех от­ри­ца­тель­ных чле­нов ариф­ме­ти­че­ской про­грес­сии –7,2; –6,9; …

8.            Ариф­ме­ти­че­ская про­грес­сия (an) за­да­на усло­ви­я­ми: a1 = 3, an + 1 = an + 4. Най­ди­те a10.

9.            Записаны пер­вые три члена ариф­ме­ти­че­ской прогрессии: 20; 17; 14. Какое число стоит в этой ариф­ме­ти­че­ской про­грес­сии на 91-м месте?

10.        Дана ариф­ме­ти­че­ская про­грес­сия (аn): −6; −2; 2; … . Най­ди­те a16.

 

Задачи на вероятности

1.            Телевизор у Маши сло­мал­ся и по­ка­зы­ва­ет толь­ко один слу­чай­ный канал. Маша вклю­ча­ет телевизор. В это время по трем ка­на­лам из два­дца­ти по­ка­зы­ва­ют кинокомедии. Най­ди­те ве­ро­ят­ность того, что Маша по­па­дет на канал, где ко­ме­дия не идет.

2.            На та­рел­ке 12 пирожков: 5 с мясом, 4 с ка­пу­стой и 3 с вишней. На­та­ша на­у­гад вы­би­ра­ет один пирожок. Най­ди­те ве­ро­ят­ность того, что он ока­жет­ся с вишней.

3.            В фирме такси в дан­ный мо­мент сво­бод­но 20 машин: 9 черных, 4 жел­тых и 7 зеленых. По вы­зо­ву вы­еха­ла одна из машин, слу­чай­но ока­зав­ша­я­ся ближе всего к заказчику. Най­ди­те ве­ро­ят­ность того, что к нему при­е­дет жел­тое такси.

4.            В каж­дой де­ся­той банке кофе со­глас­но усло­ви­ям акции есть приз. Призы рас­пре­де­ле­ны по бан­кам случайно. Варя по­ку­па­ет банку кофе в на­деж­де вы­иг­рать приз. Най­ди­те ве­ро­ят­ность того, что Варя не най­дет приз в своей банке.

5.            Миша с папой ре­ши­ли по­ка­тать­ся на ко­ле­се обозрения. Всего на ко­ле­се два­дцать че­ты­ре кабинки, из них 5 — синие, 7 — зеленые, остальные — красные. Ка­бин­ки по оче­ре­ди под­хо­дят к плат­фор­ме для посадки. Най­ди­те ве­ро­ят­ность того, что Миша про­ка­тит­ся в крас­ной кабинке.

6.            У ба­буш­ки 20 чашек: 5 с крас­ны­ми цветами, осталь­ные с синими. Ба­буш­ка на­ли­ва­ет чай в слу­чай­но вы­бран­ную чашку. Най­ди­те ве­ро­ят­ность того, что это будет чашка с си­ни­ми цветами.

7.            В сред­нем из каж­дых 80 по­сту­пив­ших в про­да­жу ак­ку­му­ля­то­ров 76 ак­ку­му­ля­то­ров заряжены. Най­ди­те ве­ро­ят­ность того, что куп­лен­ный ак­ку­му­ля­тор не заряжен.

8.            Для эк­за­ме­на под­го­то­ви­ли би­ле­ты с но­ме­ра­ми от 1 до 50. Ка­ко­ва ве­ро­ят­ность того, что на­у­гад взя­тый уче­ни­ком билет имеет од­но­знач­ный номер?

9.            В мешке со­дер­жат­ся же­то­ны с но­ме­ра­ми от 5 до 54 включительно. Ка­ко­ва вероятность, того, что из­вле­чен­ный на­у­гад из мешка жетон со­дер­жит дву­знач­ное число?

10.        В денежно-вещевой ло­те­рее на 100 000 би­ле­тов разыг­ры­ва­ет­ся 1300 ве­ще­вых и 850 де­неж­ных выигрышей. Ка­ко­ва ве­ро­ят­ность по­лу­чить ве­ще­вой выигрыш?


 

11.