ПРЯМОУГОЛЬНИК. РОМБ. КВАДРАТ
Цели: дать определение симметричных точек и фигур относительно точки и прямой, научить строить симметричные точки; рассмотреть осевую и центральную симметрии как свойства некоторых геометрических фигур.
Ход урока
I. Проверка домашнего задания.
Ответить на вопросы учащихся по домашнему заданию.
II. Изучение нового материала.
Объяснение нового материала по теме «Осевая и центральная симметрии» целесообразно построить в виде лекции, сопровождающейся показом большого иллюстративного материала: чертежей, рисунков, орнаментов и т. п.
III. Решение задач.
№№ 416, 417, 418 (устно).
№ 420.
Решение
Пусть АВС – данный равнобедренный треугольник с основанием АС и ВD – его биссектриса.
|
1. По теореме о биссектрисе равнобедренного треугольника
ВD 2. Возьмем произвольную
точку М на основании АС. Пусть, например, точка М лежит
между точками А и D. Отметим точку М1 между
точками D и С так, что |
Точка М1 симметрична точке М относительно прямой ВD. Имеем для каждой точки на основании АС симметричную ей относительно ВD точку.
3. Возьмем теперь произвольную точку N
на одной из боковых сторон АВС, например на стороне АВ.
Отложим от вершины В на луче ВС отрезок ВN1,
равный ВN. Так как BN < АВ, то ВN1
< N1 лежит на стороне ВС. Треугольник BNN1
равнобедренный, ВК – его биссектриса, следовательно, NN1
ВК,
NК = N1К, а поэтому точки и N и N1
симметричны относительно прямой ВD.
Мы доказали, что для каждой точки АВС точка,
симметричная ей относительно прямой ВD, также принадлежит этому
треугольнику. Это означает, что прямая ВD – ось симметрии треугольника АВС.
№ 422 (устно).
IV. Итоги урока.
Домашнее задание: вопросы 16–20, с. 115; №№ 421, 419, 423; предложить учащимся приготовить свои примеры осевой и центральной симметрии.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.