Методическая разработка внеклассного мероприятия «Дорога к славе»
Предмет: математика.
Целевая аудитория: учащиеся 8-9 классов
Цели проведения:
Образовательные:
- Научить применять теоретические знания и практические умения и навыки, полученные на уроках математики при решении реальных задач.
- Способствовать формированию интереса к урокам математики.
- Совершенствовать навыки работы в группе, планирования ответа и монологической речи.
Воспитательные:
- Совершенствовать навык коллективной работы.
- Способствовать развитию логического мышления, речи, памяти, внимания.
- Показать ценность каждого члена коллектива как личности.
- Создать ситуацию, в которой необходимо проявить умение брать инициативу на себя, принимать ответственные решения.
- Учить стойкости, собранности, терпимости.
Задачи развития интеллекта, воли, эмоций, познавательного интереса и способностей:
- Развивать умения анализировать ситуацию, выделять главное, сопоставлять факты, выбирать наиболее вероятные ответы.
- Развивать ассоциативное мышление.
- Воспитывать эмоциональную устойчивость в экстремальных ситуациях, дать практику преодоления трудностей.
- Развивать познавательный интерес.
Оформление: два стола для команд участников, портреты ученых- математиков, интерактивная доска или проектор с экраном, презентация.
Сценарий математического конкурса «Дорога к славе» для учеников 8-9 классов
Учитель: Добрый день, дорогие друзья! Сегодня вместе с вами проведем мероприятие, которое мы условно назвали «Дорога к славе». Почему именно так? Я думаю, что на этот вопрос мы ответим в конце встречи вместе. (Слайд 1)
Ведущий 1: Наверное, вам известно, что слово “математика” пришло к нам из древнегреческого языка. По-древнегречески “мантанейн” означает “учиться”, “приобретать знания”. Много тысяч лет люди накапливали математические знания, т.е. знания о числах, количествах и количественных отношениях. Без таких знаний древние египтяне, например, не смогли бы построить свои знаменитые пирамиды.
Ведущий 2: Математика помогает нам познавать и совершенствовать тот мир, в котором мы живем. Запуск на орбиту спутников, строительство автострад, вождение поездов, даже оклейка стен обоями, - все это и многое другое было бы просто невозможно без математических расчетов. Математика помогает нам учиться мыслить яснее и последовательнее. (отрывок из поэмы Н. И. Кованцева на фоне Слайд 2)
Ведущий 1: Преданье
старинное знает весь свет,
Как тешась горячею
ванной,
Открыл свой великий
закон Архимед,
Связав его с выходкой
странной . . .
Ведущий 2: Сияющий
выскочил вон Архимед
Из ванны горячей, где
мылся,
И прямо из бани, как
был не одет,
Куда – то бежать он
пустился . . .
Ведущий 1: Картина,
достойная кисти богов:
По улице, солнцем
нагретой,
Пунктир оставляя
из мокрых следов,
Бежит Архимед
неодетый.
Ведущий 2: Толпа
сиракузцев несётся вослед,
В восторге от
бешеной гонки,
И громко ликует,
когда Архимед
Выкрикивал
“Эврика!” звонко.
Ведущий 1: Нашёл!
Он нашёл тот желанный ответ,
Который искал так
упорно!
“Нашёл!” - в упоеньи
кричал Архимед,
“Нашёл!” - повторяли
задорно . . .
Ведущий 2: Да, действительно, великое открытие совершил Архимед, и поэтому его слово «эврика» стало как призыв. И я хочу, чтобы каждый из вас совершил свое открытие нового (пусть уже кем-то открытого) для себя и также мог воскликнуть громко: «Эврика!» и предлагаю девизом конкурса сделать именно это слово и поэтому прошу: давайте все вместе воскликнем также с озарением: ЭВРИКА!!! (Слайд 3)
Ведущий 1: Итак, начинаем дорогу к славе, которая будет состоять из нескольких этапов. А для начала представим членов жюри, которые помогут определить, чья дорога к славе будет сегодня успешнее. (представление членов жюри)
Ведущий 1: А теперь давайте выясним, кому из вас будет предоставлено право проложить свою дорогу к славе.
Этап 1 – «Отборочный» (зрительному залу задаются вопросы, учащиеся, первыми ответившие верно, вызываются на сцену) (Слайд 4)
Вопросы отборочного тура:
Задание 1. Два путешественника одновременно подошли к реке. У берега привязана лодка, в которой может переправиться только один человек. Путешественники не умели плавать, но каждому из них удалось переправиться через реку. Внимание вопрос: как могло это произойти? (Они подошли с разных сторон.)
Задание 2. Существует легенда о греческом изобретатели Дедале (мастере, сделавшем крылья Икару) и его племяннике, очень талантливейшем юноше, который придумал гончарный круг, первую в мире пилу и то, что лежит в этом ящике. За это молодой человек поплатился жизнью, так как завистливый дядя столкнул его с высокого городского вала. Самый древнейший такой предмет пролежал в земле почти 3000 лет. В нашей стране впервые был обнаружен на раскопках в Нижнем Новгороде. В Древней Греции умение пользоваться этим предметом считалось верхом учёности, а умение решать задачи с его помощью – признаком большого ума. О чем идет речь? (О циркуле)
Задание 3. Однажды в магазине мальчики купили 6 перьев, несколько тетрадей по 3 рубля и 3 карандаша. Продавец выписал чек на 40р. 40к. – вы ошиблись, - сказал ему мальчик, как только взглянул на чек, продавец был удивлен, как мальчик, не подсчитав денег, заметил ошибку. Проверка показала, что мальчик был прав. Скажите, как мальчик догадался? (Сумма должна быть кратна 3.)
Задание 4. Перед вами игральная карта - бубновый туз. Посмотрите внимательно: на карте вы видите изображение ромба. Почему на карте бубновой масти изображен именно ромб, а не что-нибудь другое? («Ромб»- бубен, а раньше бубны имели форму ромба или квадрата)
Задание 5. Вам наверное знакома басня И. А. Крылова «Волк и ягненок». Автор утверждает: « У сильного всегда бессильный виноват: тому в истории мы тьму примеров слышим». Какое число встречается в этих строках и как оно переводилось у народов? (Тьма - очень много, десять тысяч, сотня сотен.)
Задание 6. Летели утки: одна впереди и две позади, одна позади и две впереди, одна между двумя и три в ряд. Сколько летело уток? (Три утки: одна за другой.)
Задание 7. Пять десятков умножили на пять десятков. Сколько получилось десятков? (250 десятков.)
Задание 8. Эту теорему изучают в средней школе. Во Франции в средние века называли «мостом ослов», у математиков арабского Востока эта теорема получила название «теорема невесты». Как формулируется эта теорема?(Теорема Пифагора.)
Задание 9. Голландский математик 16в. Симон Стевин писал: «При одном их виде учащиеся приходят в такое уныние, что останавливают и восклицают: ради Бога, не надо дальше!» Про какие числа писал Симон Стевин? (Обыкновенные дроби.)
Задание 10. Современные цифры 1,2,3,4,…,9 ценнейший вклад в математических знаниях. Очень скоро эти цифры заимствовали арабы, от них они в 10-13в.в. распространились в Европе, а затем во всем мире. У народов какой страны эти цифры позаимствовали арабы? (У индусов, Индия.)
Задание 11. Точка, от которой в Венгрии отсчитывают расстояние, отмечена особо. В этом месте в центре Будапешта поставлен памятник. Кто удостоился таких почестей? (Нуль)
Задание 12. Эта старинная мера обозначает расстояние от 19 до 23 см. т.е. расстояние между двумя вытянутыми пальцами большим и указательным. Название этой меры сохранилось в пословице, когда говорят об очень умном человеке. Как называется мера. (Пядь. Семь пядей во лбу).
Задание 13. От трудов этого ученого шли все замыслы дальнейшего, более совершенного обоснования геометрии. Ему принадлежат слова: «В математике нет царской дороги». Назовите имя учёного. (Евклид).
Задание 14. Улитка ползает по столбу высотой 10 м. за день она поднимается на 5 м, а за ночь опускается на 4 м, за какое время улитка доберется от подножия до вершины столба? (5,5 суток)
(учащиеся на сцене делятся на две команды и садятся за столы)
Этап 2 – «Разминка» (каждая команда получает листок с вопросами, отвечает в течение 2 минут и сдает жюри, также задают по одному вопросу соперникам) (Слайд 5)
1. К Айболиту на прием пришли звери: все, кроме двух – собаки. Все, кроме двух – зайцы; все, кроме двух – кошки. Сколько животных пришло? (3)
2. В семье 5 дочерей. Каждая имеет брата. Сколько детей в семье? (6)
3. В доме четыре комнаты. Из одной сделали две. Сколько комнат стало в доме? (5)
4. Сколько месяцев в году содержат 30 дней? (11, т.е. все, кроме февраля)
5. Пара лошадей пробежала 20 км. Сколько километров пробежала каждая лошадь? (20)
6. Заяц вытащил 7 морковок и съел все, кроме 4. Сколько морковок осталось? (4)
7. На столе лежат два апельсина и четыре банана. Сколько овощей на столе? (Нисколько)
8. Чего больше в квартире: стульев или мебели? (Мебели)
9. Как можно сорвать ветку, не спугнув на ней птичку? (Подождать, пока улетит).
10. Что больше: произведение всех цифр или их сумма? (сумма)
Этап 3 – «Угадай ученого» (Слайд 6) (каждой команде предлагается по описанию деятельности и событий на листах узнать, о каком ученом древности говорится. После того, как команды выполнят задание и внесут предполагаемые ответы, ведущие последовательно зачитывают цитаты и на экране появляются портреты ученых)
1. Согласно старинным легендам, в плену в Вавилоне он встречался с персидскими магами, приобщился к восточной астрологии и мистике, познакомился с учением халдейских мудрецов. Халдеи познакомили его со знаниями, накопленными восточными народами в течение многих веков: астрономией и астрологией, медициной и арифметикой. Ему уже шестьдесят, он решает вернуться на родину, чтобы приобщить к накопленным знаниям свой народ. В совершенстве владея методами египетских жрецов, он«очищал души своих слушателей, изгонял пороки из сердца и наполнял умы светлой истиной». В своих Золотых стихах выразил те нравственные правила, строгое исполнение которых приводит души заблудших к совершенству. Вот некоторые из них: не делай никогда того, чего ты не знаешь, но научись всему, что следует знать, и тогда ты будешь вести спокойную жизнь; переноси кротко свой жребий, каков он есть, и не ропщи на него; приучайся жить без роскоши. Он учил медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. (Пифагор, Слайд 6)
2. Около 300 г. до н. э. жил во времена Птолемея I Сотера знаменитый учёный, который свёл воедино все открытия греческих математиков в 15 книгах под общим названием «Начала», которые служили учебниками на протяжении двух тысячелетий. Птолемей однажды спросил его, есть ли более короткий путь изучения геометрии, нежели Начала; а тот ответил, что «нет царского пути к геометрии». Дополнительные штрихи к его портрету можно почерпнуть у Паппа и Стобея. Папп сообщает, что он был мягок и любезен со всеми, кто мог хотя в малейшей степени способствовать развитию математических наук. В его Началах есть такая фраза: «Если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник». (Евклид, Слайд 6)
3. (287 год до н. э. — 212 год до н. э.) — великий древнегреческий математик, физик, механик и инженер . Сделал множество открытий в геометрии. Заложил основы механики, гидростатики, автор ряда практически важных изобретений. Сведения о его жизни оставили нам Полибий, Тит Ливий, Цицерон, Плутарх, Витрувий и другие. Они жили намного лет позже описываемых событий, и достоверность этих сведений оценить трудно. Уже при жизни вокруг его имени создавались легенды, поводом для которых служили его поразительные изобретения, производившие ошеломляющее действие на современников. Почитатели смогли обнаружить его полуразрушенную могилу; на ней, как и завещал ученый, было изображение шара, вписанного в цилиндр. Он прославился многими механическими конструкциями. Рычаг был известен и до него, но лишь он изложил его полную теорию и успешно её применял на практике. Его важнейшими вкладами в математику является открытие числа , формул для вычисления площадей и периметра важнейших геометрических тел и фигур (Архимед, Слайд 7)
Пока команды обсуждают свои ответы ведущие проводят игру со зрителями:
1. Что отличает один поезд от другого с точки зрения математики? (Номер поезда).
2. Без чего не могут обойтись охотники, барабанщики и математики? (Без дроби).
3. Что есть у каждого слова, растения и уравнения? (Корень).
4. Какая геометрическая фигура используется для наказания детей? (Угол).
5. Какая геометрическая фигура дружит с солнцем? (Луч).
6. Какая дуга вошла в историю ХХ – го века? (Курская дуга).
7. Как было названо военно-историческое кольцо? (Блокада).
8. Многогранник из Египта. (Пирамида).
9. Географический конус? (Вулкан).
10. Угол на который поворачивается солдат кругом (180)
(за каждый верный ответ зритель получает желтую звезду - логика)
Этап 4 «Дешифратор» (каждой команде предлагается один общий шифр и зашифрованные слова. За 3 минуты надо расшифровать как можно больше слов) (Слайд 8)
Эйнштейну принадлежат такие слова: «Среди всех наук Математика пользуется особенным уважением, основанием этому служит то единственное обстоятельство, что её положения верны и неоспоримы, в то время как положения других наук до известной степени спорны, и всегда существует опасность их опровержения новыми открытиями».
Шифр
А |
Б |
В |
Г |
Д |
Е |
Ё |
Ж |
З |
И |
Й |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
К |
Л |
М |
Н |
О |
П |
Р |
С |
Т |
У |
Ф |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
Х |
Ц |
Ч |
Ш |
Щ |
Ъ |
Ы |
Ь |
Э |
Ю |
Я |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
№ |
|
Шифр |
Слово |
||||||||||||||||||
1 |
|
13 |
21 |
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
21 |
4 |
16 |
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
12 |
16 |
18 |
6 |
15 |
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
22 |
21 |
15 |
12 |
24 |
10 |
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
19 |
20 |
6 |
17 |
6 |
15 |
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
17 |
13 |
16 |
27 |
1 |
5 |
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
1 |
2 |
19 |
24 |
10 |
19 |
19 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
14 |
15 |
16 |
4 |
16 |
25 |
13 |
6 |
15 |
|
|
|
|
|
|
|
|
|
|
|
9 |
|
21 |
18 |
1 |
3 |
15 |
6 |
15 |
10 |
6 |
|
|
|
|
|
|
|
|
|
|
|
10 |
|
14 |
1 |
20 |
6 |
14 |
1 |
20 |
10 |
12 |
1 |
|
|
|
|
|
|
|
|
|
|
Ответы: луч, угол, корень, функция, степень, площадь, абсцисса, многочлен, уравнение, математика.
За каждое верно расшифрованное слов команда получает 1 балл.
Этап 5 «Поддержка зрителей» (каждой группе по два вопроса) (Слайд 9)
1. Сколько надо букв “г”, чтобы получилась большая куча сена? (стоГ)
2. Сколько раз нужно взять букву “а”, чтобы получилась птица? (СорокА)
3. В каком слове, состоящем из пяти букв, пять “о”? (ОПять)
4. В каком слове семь букв «я»? (СемьЯ)
(за каждый верный ответ зритель получает желтую звезду - логика)
Этап 6 «Кто сказал» (командам необходимо сопоставить высказывание с его автором)
Ян Амос Каменский |
Математика открывает свои тайны только тому, кто занимается ею с чистой любовью, ради ее собственной красоты |
Эдисон Т |
Считай несчастным тот день или тот час, в котором, ты не усвоил ничего, ничего не прибавил к своему образованию |
Песталоцци И.Г |
Величие человека – в его способности мыслить |
Архимед |
Гений состоит из 1 процента вдохновения и 90 процентов потения |
Блез Паскаль |
Природа говорит на языке математики |
Галилео Галилей |
Сравнение математических фигур и величин служит материалом для игр и обучения Мудрости |
Пока команды обсуждают свои ответы ведущие проводят игру со зрителями «Ребусы»:
Число Степень Знаменатель Ответ Периметр Точка
Задача Угол
(Слайды 11-18)
(за каждый верный ответ зритель получает красную звезду - ребусы)
Затем команды сдают листы с ответами жюри, а на экране появляются верные ответы (Слайд 19-20). Очки присуждаются командам только за верные ответы.
Эап 7 «Реклама математике» (команды получают задание прорекламировать математику)
Пока команды готовятся, ведущие обращаются к зрителям:
Ведущий 1: Все вы наверное считаете, что школа отнимает у вас много времени. А хотите мы докажем, что в течение целого года вы практически не бываете в школе. В году 365 дней.
Ведущий 2: Из них 52 воскресенья и, по крайне мере, 10 других дней отдыха, поэтому отпадает 62 дня.
Ведущий 1: Летние и зимние каникулы продолжаются не менее 100 дней. Следовательно, уже 162 дня.
Ведущий 2: Ночью в школу не ходят, а ночи составляют половину года, следовательно, ещё 182 дня отпадает.
Ведущий 1: Остаётся 21 день, но ведь не весь день продолжаются занятия в школе, а не более четверти дня, поэтому ещё 15 дней отпадает.
Ведущий 2: Остаётся всего-навсего 6 дней. Так много ли времени вы проводите в школе?
З65 – 52 – 10 – 100 – 182 – 15 = 6 (данная запись на Слайде 21)
Ведущий: Есть о математике молва,
Что она в порядок ум приводит.
Потому хорошие слова
Часто говорят о ней в народе.
Выступление команд (каждая команда показывает свою рекламу о математике)(Слайд 22)
Пока жюри подводит итоги, можно провести игру «Опознай пословицу», участие в которой принимают и члены команд, и зрители.
Игра «Опознай пословицу». Предлагается версия известной русской пословицы или поговорки, переделанная на математический лад. Нужно вспомнить, как они звучат в оригинале.
1. Скажи мне, какой у тебя транспортир, и я скажу, кто ты. (Скажи мне, какой у тебя друг, и я скажу, кто ты.)
2. Десятичную дробь запятой не испортишь. (Кашу маслом не испортишь.)
3. По формуле встречают, по уму провожают. (По одёжке встречают, по уму провожают.)
4. Дарёному калькулятору в клавиши не заглядывают. (Дарёному коню в зубы не смотрят.)
5. Мал треугольник, да дорог. (Мал золотник, да дорог.)
6. Семь раз подумай, один раз ответь. (Семь раз отмерь, один раз отрежь.)
7. Математике учиться всегда пригодится. (Грамоте учиться - всегда пригодится.)
(за каждый верный ответ зритель получает синюю звезду – пословицы и поговорки)
Выступление жюри, подведение итогов, вручение наград и грамот в номинациях:
- команда-победитель;
- самый активный игрок команды;
- самый логически мыслящий;
- знаток ребусов;
- знаток пословиц и поговорок;
- знаток истории математики и т.д.
Ведущий: Математика - жизни основа,
Она скучать не дает никогда
Математика в жизни и в школе –
Будем верны мы ей всегда!
Она нам мир объяснить помогает,
Она по жизни зовет, и ведет,
Кто с математикой в сердце шагает,
Тот никогда и нигде не пропадет.
Сегодня мы прошли 7 этапов, прежде, чем достигли славы. Завершая нашу работу, вспомним о названии нашей встречи: «Дорога к славе». Почему?......ответы учеников Желаем каждому найти свою дорогу к славе и дойти!
© ООО «Знанио»
С вами с 2009 года.