РАЗВИТИЕ
МАТЕМАТИЧЕСКИХ СПОСОБНОСТЕЙ У ДЕТЕЙ
ДОШКОЛЬНОГО ВОЗРАСТА
Специфика развития математических способностей.
В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей дошкольников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально - психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности - сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов. Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы. Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие. Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений. Во-первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике дошкольники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов.
Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики. Крутецкий В. А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):
1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;
2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;
3) Способность к оперированию числовой и знаковой символикой;
4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;
5) Способность сокращать процесс рассуждения, мыслить
свернутыми структурами;
6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);
7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;
8) Математическая намять. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;
9) Способность к пространственным представлениям.
Дидактические
игры в процессе математического развития детей
дошкольного возраста. Роль
дидактических игр.
Дидактическая игра как самостоятельная игровая деятельность основана на осознанности этого процесса. Самостоятельная игровая деятельность осуществляется лишь в том случае, если дети проявляют интерес к игре, ее правилам и действиям, если эти правила ими усвоены. Как долго может интересовать ребенка игра, если ее правила и содержание хорошо ему известны? Вот проблема, которую необходимо решать почти непосредственно в процессе работы. Дети любят игры, хорошо знакомые, с удовольствием играют в них. Какое же значение имеет игра? В процессе игры у детей вырабатывается привычка сосредотачиваться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Увлёкшись, дети не замечают, что учатся: познают, запоминают новое, ориентируются в необычных ситуациях, пополняют запас представлений, понятий, развивают фантазию. Даже самые пассивные из детей включаются в игру с огромным желанием, прилагают все усилия, чтобы не подвести товарищей по игре. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом. В отличие от других видов деятельности игра содержит цель в самой себе; посторонних и отделенных задач в игре ребенок не ставит и не решает. Игра часто и определяется как деятельность, которая выполняется ради самой себя, посторонних целей и задач не преследует. Для ребят дошкольного возраста игра имеет исключительное значение: игра для них - учеба, игра для них - труд, игра для них - серьезная форма воспи тания. Игра для дошкольников - способ познания окружающего мира. Игра будет являться средством воспитания, если она будет включаться в целостный педагогический процесс. Руководя игрой, организуя жизнь детей в игре, воспитатель воздействует на все стороны развития личности ребенка: па чувства, на сознание, на волю и на поведение в
целом. Однако если для воспитанника цель - в самой игре, то для взрослого,
организующего игру, есть и другая цель - развитие детей, усвоение ими определенных знаний, формирование умений, выработка тех или иных качеств личности. В этом, между прочим, одно из основных противоречий игры как средства воспитания: с одной стороны - отсутствие цели в игре, а с другой - игра есть средство целенаправленного формирования личности. В наибольшей степени это проявляется в так называемых дидактических играх. Характер разрешения этого противоречия и определяет воспитательную ценность игры: если достижение дидактической цели будет осуществлено в игре как деятельности, заключающей цель в самой себе, то воспитательная се ценность будет наиболее значимой. Если же дидактическая задача решается в игровых действиях, целью которых и для их участников является этой дидактической задачи, то воспитательная ценность игры будет минимальной. Игра ценна только в том случае, когда она содействует лучшему пониманию математической сущности вопроса, уточнению и формированию математических знаний учащихся. Дидактические игры и игровые упражнения стимулируют общение, поскольку в процессе проведения этих игр взаимоотношения между детьми, ребенком и родителем, ребенком и педагогом начинают носить более непринуждённый и эмоциональный характер. Свободное и добровольное включение детей в игру: не навязывание игры, а вовлечение в нее детей. Дети должны хорошо понимать смысл и содержание игры, ее правила, идею каждой игровой роли. Смысл игровых действий должен совпадать со смыслом и содержанием поведения в реальных ситуациях с тем, чтобы основной смысл игровых действий переносился в реальную жизнедеятельность. В игре должны руководствоваться принятыми в обществе нормами нравственности, основанными на гуманизме, общечеловеческих ценностях. В игре не должно унижаться достоинство ее участников, в том числе и проигравших.Таким образом, дидактическая игра - это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают явления окружающей действительности и познают мир.
Формирование математических представлений у дошкольников 4-5 лет, 5-6лет.
Центральной задачей по развитию элементарных математических представлений у детей 4-5 лет является формирование у них представлений о числах первого десятка как о существенных признаках явлений окружающего мира. Важно отметить, что в программе «Радуга» основой для знакомства является не количественная, а вытекающая из неё качественная характеристика. Концентрация внимания детей данного возраста происходит на тех явлениях, в которых количество точно определено. Мышление ребёнка 4-5 лет носит наглядно действенный характер, то есть познание окружающего мира происходит у него в процессе реальных предметных манипуляций. Соответственно ведущим является предметно- манипулятивный тип игры. Очень важно в этом возрасте поддержать в детях интерес к исследованиям и познанию окружающего мира. Поэтому окружающая среда должна быть наполнена разными интересными развивающими предметами, дающими возможность самостоятельного выбора и свободу деятельности. Для этого в групповой комнате у пас имеется магнитная доска, которую по своему желанию могут использовать сразу несколько детей. Набор магнитных знаков и цифр позволяет детям проводить любые манипуляции на доске: выкладывать по порядку цифры, обводить их и т.д. На протяжении шестого года обучения дети повторяют ранее изученные цифры и знакомятся с новыми процедурами измерения разных величин. Дети знакомятся с единицами измерений длинны , температуры, времени и веса. Знакомятся с цифрой 0, 10.
В старшей группе (5- 6 лет) предусматривается значительное расширение, углубление и обобщение у детей математических представлений , дальнейшее развитие деятельности счёта. Дети учатся считать до 10 не только зрительно воспринимаемые предметы, но и звуки, предметы, движения. Уточняется представление детей о том, что число предметов не зависит от из размеров, пространственного расположения и от направления счёта. Кроме того они убеждаются в том, что множества, содержащие одинаковое число элементов,
соответствуют одному единственному натуральному числу (5белочек, 5 ёлочек, 5 концов у звёздочки и пр.)
На примерах составления множеств из разных предметов они знакомятся с количественным составом из единиц чисел до 5. Сравнивая смежные числа в пределах 10 с опорой на наглядный материал, дети усваивают, какое из двух смежных чисел больше, какое меньше, получают элементарное представление о числовой последовательности - о натуральном ряде. В старшей группе начинают формировать понятие о том, что некоторые предметы можно разделить на несколько равных частей. Дети делят на две и четаре части модели геометрических фигур (квадрат, прямоугольник, треугольник), а также другие предметы, сравнивают целое и части. Учатся различать близкие по форме геометрические фигуры: круг и фигуру овальной формы, последовательно анализировать и описывать форму предметов. Развивают умение ориентироваться в пространстве: изменять направление движения во время ходьбы, бега, гимнастических упражнений. Учим определять положение ребёнка среди окружающих предметов (например, «я стою за стулом», «около стула» и т. п.). Дети запоминают название и последовательности дней недель.
Формирование математических
способностей детей дошкольного
возраста. Логическое мышление.
Многие родители полагают, что главное при подготовке к школе - это познакомить ребенка с цифрами и научить его писать, считать, складывать и вычитать (на деле это обычно выливается в попытку выучить наизусть результаты сложения и вычитания в пределах 10).
Ребенок с развитым логическим мышлением всегда имеет больше шансов быть успешным в математике, даже если он не был заранее научен элементам дошкольной программы (счету, вычислениям и.п.).
Однако не следует думать, что развитое логическое мышление - эго природный дар, с наличием или отсутствием которого следует смириться. Существует большое количество исследований, подтверждающих, что развитием логического мышления можно и нужно заниматься (даже в тех случаях, когда природные задатки ребенка в этой области весьма скромны). Прежде всего разберемся в том, из чего складывается логическое мышление. Логические приемы умственных действий - сравнение, обобщение, анализ, синтез, классификация, аналогия, систематизация, абстрагирование - в литературе также называют логическими приемами мышления. При организации специальной развивающей работы над формированием и развитием логических приемов мышления наблюдается значительное повышение результативности этого процесса независимо от исходного уровня развития ребенка. Для выработки определенных математических умений и навыков необходимо развивать логическое мышление дошкольников. Поэтому необходимо научить ребенка решать проблемные ситуации, делать определенные выводы, приходить к логическому заключению. Решение логических задач развивает способность выделять существенное, самостоятельно подходить к обобщениям . Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Необычная игровая ситуация с элементами проблемности, характерными для каждой занимательной задачи,
всегда вызывает интерес у детей. Занимательные задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий "подвох" и для ее решения необходимо понять, в чем тут хитрость. Логическое развитие ребенка предполагает также формирование умения понимать.
Дидактические игры и предметы
домашнего обихода при обучении
математики.
Для формирования у дошкольника математических представлений используйте разнообразные дидактические игры. Такие игры учат ребенка понимать некоторые сложные математические понятия, формируют представления о соотношении цифры и числа, количества и цифры, развивают умения ориентироваться в направлениях пространства, делать выводы. При использовании дидактических игр в обучении дошкольников математике широко применяются различные предметы и наглядный материал, который способствует тому, что занятия проходят в веселой, занимательной и доступной форме. Если у ребенка возникают трудности при счете, покажите ему, считая вслух, два синих кружочка, четыре красных, три зеленых. Попросите вашего дошкольника самого считать предметы вслух. Как можно чаще считайте разные предметы (книжки, мячи, игрушки и т.д.), время от времени спрашивайте у ребенка: «Сколько чашек стоит на столе?», «Сколько лежит журналов?», «Сколько детей гуляет на площадке?» и т.п. Приобретению навыков устного счета способствует обучение дошкольника понимать назначение некоторых предметов бытового обихода, на которых написаны цифры. Таким предметом являются, например, часы. При работе с часами дошкольники не только изучают цифры, но и учатся определять время. Важно учесть, чтобы цифры на циферблате были арабские, т.е. привычные для глаз ребенка.Очень важно научить ребенка различать расположение предметов в пространстве (впереди, сзади, между, посередине, справа, слева, внизу, вверху). Для этого вы можете использовать разные игрушки. Расставьте игрушки в разном порядке и спросите, что стоит впереди, позади, рядом, далеко и т.д. Рассмотрите с ребенком убранство его комнаты, спросите, что находится сверху, что снизу, что справа, слева и т.д.
Дошкольник также должен усвоить такие понятия математики, как много, мало, один, несколько, больше, меньше, поровну. Во время прогулки или дома просите ребенка назвать предметы, которых много, мало, один предмет.
Например, стульев много, стол один; книг много, тетрадей мало. Положите перед ребенком кубики разного цвета. Пусть зеленых кубиков будет семь, а красных - пять. Спросите, каких кубиков больше, каких меньше. Добавьте еще два красных кубика. Что теперь можно сказать о красных кубиках?
Читая дошкольнику книжку или рассказывая сказки, когда встречаются числительные, просите его отложить столько счетных палочек, сколько, например, было зверей в истории. После того как вы сосчитали, сколько в сказке было зверюшек, спросите, кого было больше, кого — меньше, кого — одинаковое количество. Сравнивайте игрушки по величине: кто больше — зайка или мишка, кто меньше, кто такого же роста.
Пусть ваш дошкольник сам придумывает сказки с числительными. Пусть ребенок скажет, сколько в них героев, какие они (кто больше - меньше, выше - ниже), попросите его во время повествования откладывать счетные палочки. А затем он может нарисовать героев своей истории и рассказать о них, составить словесные портреты и сравнить их.
Очень полезно для развития математических способностей у ребенка сравнивать картинки, в которых есть и общее, и отличное. Особенно хорошо, если на картинках будет разное количество предметов. Спросите дошкольника, чем отличаются рисунки. Просите ребенка самого рисовать разное количество предметов, вещей, животных и т.д.
Подготовительная работа по
обучению детей элементарным
математическим действиям
Чтобы научить ребенка таким навыкам, как сложение и вычитание, нужно развивать такие навыки, как разбор числа на составные части и определение предыдущего и последующего числа в пределах первого десятка.
В игровой форме дети с удовольствием угадывают предыдущие и последующие числа. Спросите у дошкольника, например, какое число больше пяти, но меньше семи, меньше трех, но больше единицы и т.д. Дети очень любят загадывать числа и отгадывать задуманное. Задумайте, например, число в пределах десяти и попросите дошкольника называть разные числа. Вы говорите, больше названное число задуманного вами или меньше. Затем поменяйтесь с ребенком ролями.
Для разбора числа можно использовать счетные палочки. Попросите ребенка выложить на стол две палочки. Спросите, сколько палочек на столе. Затем разложите палочки по двум сторонам. Спросите, сколько палочек слева, сколько справа. Потом возьмите три палочки и также разложите на две стороны. Возьмите четыре палочки, и пусть ребенок разделит их. Спросите его, как еще можно разложить четыре палочки. Пусть он поменяет расположение счетных палочек таким образом, чтобы с одной стороны лежала одна палочка, а с другой — три. Точно так же последовательно разберите все числа в пределах десятка. Чем больше число, тем, соответственно, больше вариантов разбора.
Геометрия для дошкольника
Необходимо познакомить дошкольника с основными геометрическими фигурами. Покажите ему прямоугольник, круг, треугольник. Объясните, каким может быть прямоугольник (квадрат, ромб). Объясните, что такое сторона, что такое угол. Почему треугольник называется треугольником (три угла). Объясните вашему дошкольнику, что есть и другие геометрические фигуры, отличающиеся количеством углов.
Пусть ребенок составляет геометрические фигуры из палочек. Вы можете
задавать ему необходимые размеры, исходя из количества палочек. Предложите дошкольнику, например, сложить прямоугольник со сторонами в три палочки и четыре палочки; треугольник со сторонами две и три палочки.
Составляйте также фигуры разного размера и фигуры с разным количеством палочек. Попросите ребенка сравнить фигуры. Другим вариантом будут комбинированные фигуры, у которых некоторые стороны будут общими. Например, из пяти палочек нужно одновременно составить квадрат и два одинаковых треугольника; или из десяти палочек сделать два квадрата: большой и маленький (маленький квадрат составляется из двух палочек внутри большого).
Цифры
Комбинируя счетные палочки, дошкольник лучше начинает разбираться в математических понятиях («число», «больше», «меньше», «столько же», «фигура», «треугольник» и т.д.).
С помощью палочек полезно также составлять буквы и цифры. При этом происходит сопоставление понятия и символа. Пусть малыш к составленной из палочек цифре подберет то число палочек, которое составляет эта цифра. Очень важно привить ребенку навыки, необходимые для написания цифр. Для этого рекомендуется провести с ним большую подготовительную работу, направленную на уяснение разлиновки тетради. Возьмите тетрадь в клетку. Покажите клетку, ее стороны и углы. Попросите ребенка поставить точку, например, в нижнем левом углу клетки, в правом верхнем углу и т.п. Покажите середину клетки и середину сторон клетки.
Покажите дошкольнику, как рисовать простейшие узоры с помощью клеток. Для этого напишите отдельные элементы, соединяя, например, верхний правый и нижний левый углу клетки; правый и левый верхние углы; две точки, расположенные посередине соседних клеток. Нарисуйте простые «бордюрчики» в тетради в клетку.
Здесь важно, чтобы ребенок сам хотел заниматься. Поэтому не заставляйте
его, пусть он рисует не более двух узоров за один урок. Подобные упражнения не только знакомят дошкольника с основами письма цифр, но также прививают навыки тонкой моторики, что в дальнейшем будет очень помогать ребенку при обучении написанию букв.
Логические игры
Логические игры математического содержания воспитывают у детей познавательный интерес, способность к творческому поиску, желание и умение учиться. Занимательные математические задачи способствуют развитию у ребенка умения быстро воспринимать познавательные задачи и находить для них верные решения. Дети начинают понимать, что для правильного решения логической задачи необходимо сосредоточиться, они начинают осознавать, что такая занимательная задачка содержит в себе некий «подвох» и для ее решения необходимо понять, в чем тут хитрость. Логические задачки по математике могут быть следующими:
• Стоит клен. На клене две ветки, на каждой ветке по две вишни. Сколько всего вишен растет на клене? (Ответ: ни одной — на клене вишни не растут.)
• Если гусь стоит на двух ногах, то он весит 4 кг. Сколько будет весить гусь, если он стоит на одной ноге? (Ответ: 4 кг.)
• У двух сестер по одному брату. Сколько детей в семье? (Ответ: 3.)
Если ребенок не справляется с решением математической задачи, то, возможно, он еще не научился концентрировать внимание и запоминать условие. Вполне вероятно, что, читая или слушая второе условие, дошкольник забывает предыдущее. В этом случае вы можете помочь ему сделать определенные выводы уже из условия математической задачи. Прочитав первое предложение, спросите дошкольника, что он узнал, что понял из него. Затем прочитайте второе предложение и задайте ребенку тот же вопрос. И так далее. Вполне возможно, что к концу условия ребенок уже догадается, какой здесь должен быть ответ.
Решите сами вслух какую-нибудь задачу по математике. Делайте определенные выводы после каждого предложения. Пусть дошкольник следит за ходом ваших мыслей. Пусть он сам поймет, как решаются математические задачи подобного типа. Поняв принцип решения логических задач, ребенок убедится в том, что решать такие задачи по математике просто и даже интересно.
Обычные загадки, созданные народной мудростью, также способствуют развитию логического мышления ребенка:
• Два конца, два кольца, а посередине гвоздик (ножницы).
• Висит груша, нельзя скушать (лампочка).
• Зимой и летом одним цветом (елка).
• Сидит дед, во сто шуб одет; кто его раздевает, тот слезы проливает (лук).
Все описанные приемы активно используются на занятиях по формированию элементарных математических представлений в нашем центре развития ребенка. Но они настолько просты, что у родителей есть возможность использовать их и при домашнем закреплении полученного материала.
Но это не только математическая тренировка, это также и прекрасно проведенное время вместе с собственным ребенком. Однако в стремлении к изучению основ математики важно не переусердствовать. Самое главное — это привить дошкольнику интерес к познанию. Для этого занятия по математике должны проходить в увлекательной игровой форме и не занимать много времени.
Скачано с www.znanio.ru
© ООО «Знанио»
С вами с 2009 года.