Реферат
Лазерные системы
управления оружием
Работу выполнила:
ученица 11 класса
Кузьмина Снежана
п.Табулга 2020г
Оглавление
Введение
1. Причина удивительных свойств лазерного луча. когерентный свет
1.1 Анатомия лазера
1.2 Лазерная локация
1.3 Наземные лазерные дальномеры
1.4 Наземные локаторы
1.5 Бортовые лазерные системы
1.6. Лазерные системы разведки
1.7 Голографические индикаторы на лобовом стекле
Заключение
Введение
Первый лазер был создан в 1960 году - и
сразу началось бурное развитие лазерной техники. В сравнительно короткое время
появились различные типы лазеров и лазерных устройств, предназначенных для
решения конкретных научных и технических задач. Человек никогда не хотел жить в
темноте, он изобрел много разнообразных источников света - от канувших в
прошлое стеариновых свечей, газовых рожков, и керосиновых ламп до ламп
накаливания и ламп дневного света, которые сегодня освещают наши улицы и дома.
И вот появился еще один источник света - лазер. Этот источник света совершенно
необычен. В отличие от всех других источников, он вовсе не предназначается для
освещения. Конечно при желании лазеры могут применяться в качестве
экстравагантных светильников. Однако использовать лазерный луч в целях
освещения столь же нерационально, как отапливать комнату сжигаемыми в камине
ассигнованиями. В отличие от других источников света лазер генерирует световые
лучи, способные гравировать, сваривать резать материалы, передавать информации,
осуществлять измерения, контролировать процесса, получать особо чистые
вещества, направлять химические реакции. Так что это поистине удивительные
лучи.
1. Причина удивительных свойств лазерного луча. когерентный свет
Для объяснения этих свойств в научном языке есть специальный термин когерентность. Ученые скажут, что свет от лампы накаливания не когерентен, а лазерное излучение когерентно - и все им понятно. Человеку же, недостаточно просвещенному в области физики, надо очевидно, пояснить, что такое некогерентный или когерентный свет. В общих чертах такое пояснение дать вроде бы несложно. Вполне понятно, что поток света, распространяющийся от любого источника есть суммарный результат высвечивания великого множества элементарных излучателей, каковыми являются отдельные атомы или молекулы светящегося тела. В случае лампы накаливания каждый атом - излучатель высвечивается, никак не согласуясь с другими атомами-излучателями, поэтому в целом получается световой поток, который можно называть внутренне непорядочным, хаотическим. Это есть некогерентный свет.
В лазере же
гигантское количество атомов излучателей высвечивается согласованно в результате
возникает внутренне упорядоченный световой поток. Это есть когерентный свет.
Когда мы говорим о лазерном луче, то обычно представляем себе яркий и тонкий
световой шнур или световую нить. Нечто подобное можно увидеть в
действительности если включить гелий-неоновый лазер. Правда этот лазер
маломощный настолько, что его луч можно спокойно "ловить" в руку. К
тому же луч не ослепительно белый, а сочного красного цвета. Чтобы он был лучше
виден, надо создать в лаборатории полумрак и легкую задымленность. Луч почти не
расширяется и везде имеет практически одинаковую интенсивность. Можно
разместить на его пути ряд зеркал и заставить его описать. Сложную изломанную
траекторию в пространстве лаборатории. В результате возникнет эффективное
зрелище - комната, как бы, перечеркнутая, в разных направлениях яркими красными
прямыми нитями. Однако не всегда лазерный луч выглядит столь эффектно.
Например, луч СО2 лазера вообще невидим - ведь его длина волны попадает в
инфракрасную область спектра. Кроме того, не следует думать, что лазерный луч -
это обязательные непрерывный поток световой энергии. В большинстве случаев
лазеры генерируют не непрерывный световой пучок, а световые импульсы.
1.1Анатомия лазера
Как выглядит лазер? На что он похож? Лазеры отличаются большим разнообразием. Существует огромное число разных типов лазеров, они различаются не только характеристиками генерируемого ими излучения, но также внешним видом, размерами, особенностями конструкции. Сердце лазера - его активный элемент. У одних лазеров он представляет собой кристаллический или стеклянный стержень цилиндрической формы. У других это отпаянная стеклянная трубка, внутри которой находится специально подобранная газовая смесь. У третьих - кювета со специальной жидкостью. Соответственно различают лазеры твердотельные, газовые и жидкостные. К настоящему времени сложились основные направления, по которым идет внедрение лазерной техники в военное дело. Этими направлениями являются:
Лазерная локация (наземная, бортовая, подводная).
Лазерная связь.
Лазерные навигационные системы.
Лазерное оружие.
Лазерные системы ПРО и ПКО.
Ускоренными темпами идет внедрение лазеров в военную технику США, Франции, Англии, Японии, Германии, Швейцарии. Государственные учреждения этих стран всемерно поддерживают и финансируют работы в данной области.
1.2Лазерная локация
Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации. Способность распространяться прямолинейно.
Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект (пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг. Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны. Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0.1.5 градуса и при этом без дополнительных оптических систем. Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.
Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них. Прежде всего, зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора. Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.
Следующим параметром
локатора является определяемые координаты. Они зависят от назначения локатора.
Если он предназначен для определения местонахождения наземных и подводных
объектов, то достаточно измерять две координаты: дальность и азимут. При
наблюдении за воздушными объектами нужны три координаты. Эти координаты следует
определять с заданной точностью, которая зависит от систематических и случайных
ошибок. Будем пользоваться таким понятием как разрешающая способность. Под
разрешающей способностью понимается возможность раздельного определения
координат близко расположенных целей.
1.3 Наземные
лазерные дальномеры
Лазерная дальнометрия является одной из
первых областей практического применения лазеров в зарубежной военной технике.
Первые опыты относятся к 1961г. Сейчас же лазерные дальномеры используются в
наземной военной техники (артиллеристские, танковые), и в авиации (дальномеры,
высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во
Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят в
армиях капиталистических стран. Задача определения расстояния между дальномером
и целью сводится к измерению соответствующего интервала времени между зондирующим
сигналом и сигналом, отраженным от цели. Различают три метода измерения
дальности в зависимости от того, какой характер модуляции лазерного излучения
используется в дальномере: импульсный фазовый или фазоимпульсный.
Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылают зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Погрешность такого метода измерения 30см. Зарубежные специалисты считают, что для решения ряда практических задач это вполне достаточно. При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния. Оценим погрешность фазового дальномера, пригодного работать в полевых условиях. Специалисты утверждают, что оператору (не очень квалифицированному солдату) не сложно определить фазу с ошибкой не более одного градуса, следовательно погрешность будет составлять примерно 5 см.
Первый лазерный дальномер XM-23 прошел испытание во Вьетнаме и был принят на вооружение в армии США. Также интересен шведский дальномер. Он предназначен для использования в системах управления бортовой корабельной и береговой артиллерии. Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с в течение 20с, либо через каждые 4с в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, в памяти другого хранятся четыре предыдущие измеренные дистанции. Он имеет в качестве модулятора добротности оптикомеханический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр оптической системы составляет 70мм. Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков военного вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. Для этого в США был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло имел устройство, обеспечивающее ввод дальности в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности может производиться как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа.
1.4 Наземные локаторы
Как сообщает печать, за рубежом разрабатывается ряд стационарных лазерных локаторов. Эти локаторы предназначены для слежения за ракетами на начальном этапе полета, а также для слежения за самолетами и спутниками. Большое значение придается лазерному локатору, включенному в систему ПРО и ПКО. По проекту американской системы именно оптический локатор обеспечивает выдачу точных координат головной части или спутника в систему лазерного поражения цели.
Локатор типа "ОПДАР" предназначен для слежения за ракетами на активном участке их полета. Тактические требования определяют незначительную дальность действия локатора, поэтому на нем установлен газовый лазер, работающий на гелий-неоновой смеси, излучающий электромагнитную энергию на волне 0.6328мкм при входной мощности всего 0.01Вт. Лазер работает в непрерывном режиме, но его излучение модулируется с частотой 100МГц. Передающая оптическая система собрана из оптических элементов по схеме Кассагрена, что обеспечивает очень незначительную ширину расходимости луча. Локатор монтируется на основании, относительно которого он может с помощью следящей системы устанавливаться в нужном направлении с высокой точностью. Эта следящая система управляется сигналами, которые поступают через кодирующее устройство. Разрядность кода составляет 21 единицу двоичной информации, что позволяет устанавливать локатор в нужном направлении с точностью около одной угловой секуны.
1.5Бортовые
лазерные системы
Зарубежная печать сообщает, что в военной авиации стран США и НАТО стали широко использоваться лазерные дальномеры и высотомеры, они дают высокую точность измерения дальности или высоты, имеют небольшие габариты и легко встраиваются в систему управления огнем. Помимо этих задач на лазерные системы сейчас возложен ряд других задач. К ним относятся наведение и целеуказание. Лазерные системы наведения и целеуказания используются в вертолетах, самолетах и беспилотных летательных аппаратах. Их разделяют на полуактивные и активные. Принцип построения полуактивной системы следующий: цель облучается излучением лазера или непрерывно или импульсно, но так, что бы исключить потерю цели лазерной системы самонаведения, для чего подбирается соответствующая частота посылок. Освещение цели производится либо с наземного, либо с воздушного наблюдательного пункта; отраженное от цели излучение лазера воспринимается головкой самонаведения, установленной на ракете или бомбе, которая определяет ошибку в рассогласовании положения оптической оси головки с траекторией полета. Эти данные вводятся в систему управления, которая и обеспечивает точное наведение ракеты или бомбы на освещаемую лазером цель. Лазерные системы охватывают следующие виды боеприпасов: бомбы, ракеты класса "воздух-земля", морские торпеды.
Боевое применение лазерных систем самонаведения определяется типом системы, характером цели и условиями боевых действий. Например, для управляемых бомб целеуказатель и бомба с головкой самонаведения могут находиться на одном носителе. Для борьбы с тактическими наземными целями в зарубежных лазерных системах целеуказание может быть производиться с вертолетов или с помощью наземных переносных целеуказателей, а поражение выполняться с вертолетов или самолетов. Но отмечается и сложность использования целеуказателей с воздушных носителей. Для этого требуется совершенная система стабилизации для удержания лазерного пятна на цели.
1.6. Лазерные системы разведки
Для разведки с воздушных в зарубежных армиях используются самые различные средства: фотографические, телевизионные, инфракрасные, радиотехнические и др. Сообщается, что наибольшую емкость полезной информации дают средства фоторазведки. Но им присущи такие недостатки, как невозможность ведения скрытной разведки в ночных условиях, а также длительные сроки обработки передачи и предоставления материалов, несущих информацию. Передавать оперативно информацию позволяют телевизионные системы, но они не позволяют работать ночью и в сложных метеоусловиях. Радиосистемы позволяют работать ночью и в плохих метеоусловиях, но они имеют относительно невысокую разрешающую способность.
Принцип действия лазерной системы воздушной разведки заключается в следующем. Излучение с бортового носителя облучает разведуемый участок местности и расположенные на нем объекты по-разному отражают упавшее на него излучение. Можно заметить, что один и тот же объект, в зависимости от того, на каком фоне он расположен имеет различный коэффициент яркости, следовательно, он имеет демаскирующие признаки. Его легко выделить на окружающем фоне. Отраженный подстилающей поверхностью и объектами, на ней расположенными, лазерное излучение собирается приемной оптической системой и направляется на чувствительный элемент. Приемник преобразует отраженное от поверхности излучение и электрический сигнал, который будет промодулирован по амплитуде в зависимости от распределения яркости. Поскольку в лазерных системах разведки реализуется, как правило, строчнокадровая развертка, то такая система близка к телевизионной. Узконаправленный луч лазера развертывается перпендикулярно направлению полета самолета. Одновременно с этим сканирует и диаграмма направленности приемной системы. Это обеспечивает формирование строки изображения. Развертка по кадру обеспечивается движением самолета. Изображение регистрируется либо на фотопленку, либо может производиться на экране электронно-лучевой трубки.
1.7 Голографические индикаторы на лобовом стекле
Для использования в прицельно-навигационной системе ночного видения, предназначенной для истребителя F-16 и штурмовика A-10 был разработан голографический индикатор на лобовом стекле. В связи с тем, что габариты кабины самолетов невелики, то с тем, что бы получить большое мгновенное поле зрения индикатора разработчиками было решено разместить коллимирующий элемент под приборной доской. Оптическая система включает три раздельных элемента, каждый из которых обладает свойствами дифракционных оптических систем: центральный изогнутый элемент выполняет функции коллиматора, два других элемента служат для изменения положения лучей. Разработан метод отображения на одном экране объединенной информации: в форме растра и в штриховой форме, что достигается благодаря использованию обратного хода луча при формировании растра с интервалом времени 1.3мс, в течении которого на ТВ-экране воспроизводится информация в буквенно-цифровой форме и в виде графических данных, формируемых штриховым способом. Для экрана ТВ-трубки индикатора используется узкополосный люминофор, благодаря чему обеспечивается хорошая селективность голографической системы при воспроизведении изображений и пропускание света без розового оттенка от внешней обстановки. В процессе этой работы решалась проблема приведения наблюдаемого изображения в соответствие с изображением на индикаторе при полетах на малых высотах в ночное время (система ночного видения давала несколько увеличенное изображение), которым летчик не мог пользоваться, поскольку при этом несколько искажалась картина, которую можно бы было получить при визуальном обзоре. Исследования показали, что в этих случаях летчик теряет уверенность, стремится лететь с меньшей скоростью и на большой высоте.
Необходимо было
создать систему, обеспечивающую получение действительного изображения
достаточно большого размера, чтобы летчик мог пилотировать самолет визуально
ночью и в сложных метеоусловиях, лишь изредка сверяясь с приборами. Для этого
потребовалось широкое поле индикатора, при котором расширяются возможности
летчика по пилотированию самолета, обнаружению целей в стороне от маршрута и
производству противозенитного маршрута и маневра атаки целей. Для обеспечения
этих маневров необходимо большое поле зрения по углу места и азимуту. С
увеличением угла крена самолета летчик должен иметь широкое поле зрения во
вертикали. Установка коллимирующего элемента как можно выше и ближе к глазам
летчика была достигнута за счет применения голографических элементов в качестве
зеркал для изменения направления пучка лучей. Это хотя и усложнило конструкцию,
однако дало возможность использовать простые и дешевые голографические элементы
с высокой отдачей.
Заключение
За последнее время в России и за рубежом были проведены обширные исследования в области квантовой электроники. созданы разнообразные лазеры, а также приборы, основанные на их использовании. Лазеры теперь применяются в локации и в связи, в космосе и на земле, в медицине и строительстве, в вычислительной технике и промышленности, в военной технике. Появилось новое научное направление голография, становление и развитие которой также немыслимо без лазеров. Однако, ограниченный объем этой работы не позволил отметить такой важный аспект квантовой электроники, как лазерный термоядерный синтез, об использовании лазерного излучения для получения термоядерной плазмы.
Устойчивость светового сжатия. Не рассмотрены такие важные аспекты, как лазерное разделение изотопов, лазерное получение чистых веществ, лазерная химия и многое другое. Но мы рассмотрели одну из частей употребления лазеров в военной технологии, которые сейчас широким фронтом вторгаются в нашу действительность, обеспечивая подчас уникальные результаты. Человек получил в свое распоряжение инструмент для повседневной научной и производственной деятельности. Мы еще не знаем, а вдруг может произойти научная революция в мире основанная на сегодняшних достижениях лазерной техники. Вполне возможно, что через 50 лет действительность окажется гораздо богаче нашей фантазии.. Может быть, переместившись в машине времени" на 50 лет вперед, мы увидим мир, затаившийся под прицелом лазеров.
Мощные лазеры,
нацелившись из укрытий на космические аппараты и спутники. Специальные зеркала
на околоземных орбитах приготовились отразить в нужном направлении беспощадный
лазерный луч, направить его на нужную цель. На огромной высоте зависли мощные
гамма-лазеры, излучение которых способно в считанные секунды уничтожить все
живое в любом городе на Земле. И негде укрыться от грозного лазерного луча -
разве, что спрятаться в глубоких подземных убежищах. Но это все фантазии. И не
дай бог, она превратится в реальность. Все это зависит от нас, от наших
действий сегодня, от того, насколько активно все мы будет относиться к достижениям
нашего разума правильно, и направлять наши решения в достойное русло этой
необъятной реки" которая называется - Лазер.
Литература
https://www.bibliofond.ru/view.aspx?id=534428#text
https://www.bestreferat.ru/referat-57760.html
Скачано с www.znanio.ru
© ООО «Знанио»
С вами с 2009 года.