Самостоятельная работа. Алгебра 9 класс. Сумма первых n членов геометрической прогрессии.

  • Контроль знаний
  • docx
  • 07.04.2024
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Самостоятельная работа. Алгебра 9 класс. Сумма первых n членов геометрической прогрессии.
Иконка файла материала С.р. 9 кл. Сумма геом. пр..docx

1-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b;0,016. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=18 и q=3.

 

2-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b;0,25. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=12 и q=2.

 

 

3-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b; -128. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=25 и q=-5.

4-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b; -54. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=32 и q=4.

 

 

1-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b;0,016. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=18 и q=3.

 

2-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b;0,25. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=12 и q=2.

 

 

3-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b; -128. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=25 и q=-5.

4-вариант

1. Числа составляют ряд геометрической прогрессии 2; a; b; -54. Найдите знаменатель, неизвестные члены и сумму этого ряда.

2.Найдите сумму первых шести членов геометрической прогрессии, если b3=32 и q=4.

 

 

 

 

 

Ответы:

1-в

1. a=0,4; b=0,08; S4=2,496; q=0,2.

2.b1=2; S6=728.

2-в

1. a=1; b=0,5; S4=3,75; q=0,5.

2. b1=3; S6=189.

3-в

1. a=-8; b=32; S4=-102; q=-4.

2.b1=1; S6=-2604.

4-в

1. a=-6; b=18; S4=-40; q=-3.

2. b1=2; S6=2730.

 

 


 

Скачано с www.znanio.ru