1 вариант
1. На кольцевой дороге расположено четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б – 75 км, между А и В – 50 км, между В и Г – 40 км, между Г и А – 60 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.
2. Про натуральные числа A, B и С известно, что каждое из них больше 5, но меньше 9. Загадали натуральное число, затем его умножили на A, потом прибавили к полученному произведению B и вычли С. Получилось 172. Какое число было загадано
3. Если бы каждый из двух множителей увеличили на 1, то их произведение увеличилось бы на 11. На сколько увеличится произведение этих множителей, если каждый из них увеличить на 2?
4. Список заданий викторины состоял из 31 вопроса. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 12 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 70 очков, если известно, что по крайней мере один раз он ошибся?
5. В доме, в котором живёт Люда, 5 этажей и несколько подъездов. На каждом этаже находится по 3 квартиры. Люда живёт в квартире № 59. В каком подъезде живёт Люда?
6. Во всех подъездах дома одинаковое число этажей, а на всех этажах одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 455 квартир?
7. Шесть столбов соединены между собой проводами так, что от каждого столба отходит ровно 5 проводов. Сколько всего проводов протянуто между этими девятью столбами?
8. На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 8 кусков, если по жёлтым – 10 кусков, а если по зелёным – 6 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?
9. В конце четверти Петя выписал подряд все свои отметки по одному из предметов, их оказалось 5, и поставил между некоторыми из них знаки умножения. Произведение получившихся чисел оказалось равным 1 590. Какая отметка выходит у Пети в четверти по этому предмету, если учитель ставит только отметки «2», «3», «4» или «5» и итоговая отметка в четверти является средним арифметическим всех текущих отметок, округлённым по правилам округления? (Например, 3,2 округляется до 3; 4,5 – до 5; а 2,8 – до 3.)
2 вариант
1. На кольцевой дороге расположено четыре бензоколонки: А, Б, В и Г. Расстояние между А и Б – 50 км, между А и В – 40 км, между В и Г – 25 км, между Г и А – 35 км (все расстояния измеряются вдоль кольцевой дороги по кратчайшей дуге). Найдите расстояние (в километрах) между Б и В.
2. Про натуральные числа A, B и С известно, что каждое из них больше 5, но меньше 9. Загадали натуральное число, затем его умножили на A, потом прибавили к полученному произведению B и вычли С. Получилось 249. Какое число было загадано?
3. Если бы каждый из двух множителей увеличили на 1, то их произведение увеличилось бы на 8. На сколько увеличится произведение этих множителей, если каждый из них увеличить на 3?
4. Список заданий викторины состоял из 25 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 9 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 56 очков, если известно, что по крайней мере один раз он ошибся?
5. В доме, в котором живёт Галя, 9 этажей и несколько подъездов. На каждом этаже находится по 4 квартиры. Галя живёт в квартире № 82. В каком подъезде живёт Галя?
6. Во всех подъездах дома одинаковое число этажей, и на всех этажах одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 357 квартир?
7. Девять столбов соединены между собой проводами так, что от каждого столба отходит ровно 8 проводов. Сколько всего проводов протянуто между этими девятью столбами?
8. На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 9 кусков, если по жёлтым – 7 кусков, а если по зелёным – 6 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?
9. В конце четверти Петя выписал подряд все свои отметки по одному из предметов, их оказалось 5, и поставил между некоторыми из них знаки умножения. Произведение получившихся чисел оказалось равным 1 590. Какая отметка выходит у Пети в четверти по этому предмету, если учитель ставит только отметки «2», «3», «4» или «5» и итоговая отметка в четверти является средним арифметическим всех текущих отметок, округлённым по правилам округления? (Например, 3,2 округляется до 3; 4,5 – до 5; а 2,8 – до 3.)
© ООО «Знанио»
С вами с 2009 года.