Виды симметрии
Симметрия (означает «соразмерность» ) — свойство геометрических объектов совмещаться с собой при определенных преобразованиях. Под симметрией понимают всякую правильность во внутреннем строении тела или фигуры.
Центральная симметрия
Центральная симметрия – симметрия относительно точки. Симметрия относительно точки предполагает, что по обе стороны от точки на одинаковых расстояниях находится что-либо, например другие точки или геометрическое место точек (прямые линии, кривые линии, геометрические фигуры).
Если соединить прямой симметричные точки (точки геометрической фигуры) через точку симметрии, то симметричные точки будут лежать на концах прямой, а точка симметрии будет ее серединой. Если закрепить точку симметрии и вращать прямую, то симметричные точки опишут кривые, каждая точка которых тоже будет симметрична точке другой кривой линии.
Осевая симметрия
Осевая симметрия – симметрия относительно прямой.
Симметрия относительно прямой (оси симметрии) предполагает, что по перпендикуляру, проведенному через каждую точку оси симметрии, на одинаковом расстоянии от нее расположены две симметричные точки. Относительно оси симметрии (прямой) могут располагаться те же геометрические фигуры, что и относительно точки симметрии.
Примером может служить лист тетради, который согнут пополам, если по линии сгиба провести прямую линию (ось симметрии). Каждая точка одной половины листа будет иметь симметричную точку на второй половине листа, если они расположены на одинаковом расстоянии от линии сгиба на перпендикуляре к оси.
Зеркальная симметрия
Зеркальной симметрией (симметрией относительно плоскости α) называется такое отображение пространства на себя, при котором любая точка М переходит в симметричную ей относительно этой плоскости α точку М1.
Понятие многогранника
Многогранник или многогранная поверхность или полиэдр – поверхность, составленная из многоугольников и ограничивающую некоторое геометрическое тело.
Строение
Многоугольники, из которых составлен многогранник, называются его гранями. Гранями тетраэдра и октаэдра являются треугольники. Гранями параллелипипеда – параллелограммы.
Стороны граней называются ребрами, а концы ребер – вершинами многогранника.
Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.
Плоскость, по обе стороны от которой имеются точки многогранника, называется секущей плоскостью, а общая часть многогранника и секущей плоскости – сечением многогранника.
Правильные многогранники
Многогранник называется правильным, если:
- он выпуклый;
- все его грани являются равными правильными многоугольниками;
- в каждой его вершине сходится одинаковое число рёбер.
Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.
В трёхмерном евклидовом пространстве существует всего пять правильных многогранников. Правильные многогранники также называются Платоновы тела. Далее они будут показаны.
Элементы симметрии правильных многогранников
Правильный тетраэдр не имеет центра симметрии. Он имеет три оси симметрии и шесть плоскостей симметрии.
Куб имеет один центр симметрии – точку пересечения его диагоналей. Куб имеет девять осей симметрии. Куб имеет девять плоскостей симметрии.
Правильный октаэдр, правильный икосаэдр и правильный додекаэдр имеют центр симметрии и несколько осей и плоскостей симметрии.
Полуправильные многогранники
Полуправильные многогранники — в общем случае это различные выпуклые многогранники, которые, не являясь правильными, имеют их некоторые признаки, например: все грани равны, все грани являются правильными многоугольниками, имеются различные пространственные симметрии. Определение может варьироваться и включать различные типы многогранников, но в первую очередь сюда относятся архимедовы тела.
Архимедовы тела — выпуклые многогранники, обладающие двумя свойствами:
Все грани являются правильными многоугольниками двух или более типов (если все грани — правильные многоугольники одного типа, это —правильный многогранник);
Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую. В частности, все многогранные углы при вершинах конгруэнтны.
Первое построение полуправильных многогранников приписывается Архимеду, хотя соответствующие работы утеряны.
Каталоновы тела
Двойственные архимедовым телам, так называемые каталановы тела, имеют конгруэнтные грани, равные двугранные углы и правильные многогранные углы. Каталановы тела тоже иногда называют полуправильными многогранниками. В этом случае полуправильными многогранниками считается совокупность архимедовых и каталановых тел. Архимедовы тела являются полуправильными многогранниками в том смысле, что их грани — правильные многоугольники, но они не одинаковы, а каталановы — в том смысле, что их грани одинаковы, но не являются правильными многоугольниками; при этом для тех и других сохраняется условие одного из типов пространственной симметрии: тетраэдрического, октаэдрического или икосаэдрического.
Архимедовы — тела, у которых отсутствует второе свойство, у каталановых отсутствует первое, третье свойство сохраняется для обоих видов тел.
Существует 13 архимедовых тел, два из которых (курносый куб и курносый додекаэдр) не являются зеркально-симметричными и имеют левую и правую формы. Соответственно, существует 13 каталановых тел. Далее будут показаны 8 из них. Будет показано архимедово тело и соответствующее ему каталоново тело.
Невыпуклые однородные многогранники
Невыпуклые однородные многогранники, то есть невыпуклые многогранники, все грани которых - правильные многоугольники и все многогранные углы которых равны, действительно существуют. Однородный многогранник может быть невыпуклым в одном из двух случаев. Во-первых, его выпуклые грани могут пересекаться. На рисунке сверху изображен октагемиоктаэдр. Его выпуклые грани - треугольники и шестиугольники - пересекаются, и в результате тело получается невыпуклым. На рисунке снизу изображен малый звездчатый додекаэдр.
Тела Кеплера-Пуансо
Среди невыпуклых однородных многогранников существуют аналоги платоновых тел - четыре правильных невыпуклых однородных многогранника или тела Кеплера-Пуансо.
Как следует из их названия, тела Кеплера-Пуансо - это невыпуклые однородные многогранники, все грани которых - одинаковые правильные многоугольники, и все многогранные углы которых равны. Грани при этом могут быть как выпуклыми, так и невыпуклыми.
Большой додекаэдр
12 граней
30 ребер
12 вершин
0 невыпуклых граней
Большой додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого додекаэдра - пересекающиеся пятиугольники. Вершины большого додекаэдра совпадают с вершинами описанного икосаэдра.
Большой додекаэдр был впервые описан Луи Пуансо в 1809 г.
Большой звездчатый додекаэдр
12 граней
30 ребер
20 вершин
0 невыпуклых граней
Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра - пентаграмы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.
Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г.
Большой икосаэдр
12 граней
30 ребер
20 вершин
0 невыпуклых граней
Большой икосаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого икосаэдра - пересекающиеся треугольники. Вершины большого икосаэдра совпадают с вершинами описанного икосаэдра.
Большой икосаэдр был впервые описан Луи Пуансо в 1809 г.
Звездчатые многогранники
Звёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников, грани попарно соединяются в рёбрах (при этом внутренние линии пересечения не считаются рёбрами).
Звёздчатой формой многогранника называется многогранник, полученный путём продления граней данного многогранника через рёбра до их следующего пересечения с другими гранями по новым рёбрам.
Правильные звёздчатые многогранники — это звёздчатые многогранники, гранями которых являются одинаковые (конгруэнтные) правильные или звёздчатые многоугольники. В отличие от пяти классических правильных многогранников (платоновых тел), данные многогранники не являются выпуклыми телами.
В 1811 году Огюстен Лу Коши установил, что существуют всего 4 правильных звёздчатых тела (они называются телами Кеплера — Пуансо), которые не являются соединениями платоновых и звёздчатых тел. К ним относятся открытые в 1619 году Иоганном Кеплером малый звёздчатый додекаэдр и большой звёздчатый додекаэдр, а также большой додекаэдр и большой икосаэдр, открытые в 1809 году Луи Пуансо. Остальные правильные звёздчатые многогранники являются или соединениями платоновых тел, или соединениями тел Кеплера — Пуансо.
Звездчатый октаэдр
Существует только одна звёздчатая форма октаэдра. Звёздчатый октаэдр был открыт Леонардо да Винчи, затем спустя почти 100 лет переоткрыт И. Кеплером и назван им Stella octangula — звезда восьмиугольная. Псути она является соединением двух тетраэдров.
Звездчатые формы додекаэдра
Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр (звёздчатый большой додекаэдр, завершающая форма). В отличие от октаэдра, любая из звёздчатых форм додекаэдра не является соединением платоновых тел, а образует новый многогранник. У большого додекаэдра гранями являются пятиугольники, которые сходятся по пять в каждой из вершин.
Звездчатые формы икосаэдра
Икосаэдр имеет 59 звёздчатых форм, из которых 32 обладают полной, а 27 — неполной икосаэдральной симметрией, что было доказано Коксетером совместно с Дювалем, Флэзером и Петри c применением правил ограничения, установленных Дж. Миллером. Среди звёздчатых форм также имеются: соединение пяти октаэдров, соединение пяти тетраэдров, соединение десяти тетраэдров. Первая звёздчатая форма — малый триамбический икосаэдр.
Звездчатые формы икосододекаэдра
Икосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра. Икосододекаэдр имеет 32 грани, из которых 12 являются правильными пятиугольными гранями, а остальные 20 — правильными треугольниками.
Пирамида
Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объём пирамиды, был Демокрит, а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.
Элементы пирамиды
апофема — высота боковой грани правильной пирамиды, проведённая из её вершины (также апофемой называют длину перпендикуляра, опущенного из середины правильного многоугольника на одну из его сторон);
боковые грани — треугольники, сходящиеся в вершине;
боковые ребра — общие стороны боковых граней;
вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания;
высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра);
диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания;
основание — многоугольник, которому не принадлежит вершина пирамиды.
Призма
Призма — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Или (равносильно) — это многогранник, в основаниях которого лежат равные многоугольники, а боковые грани — параллелограммы.
Призма является разновидностью цилиндра (в общем смысле).
Виды призм
Призма, основанием которой является параллелограмм, называется параллелепипедом.
Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.
Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником.
Заключение
Первыми правильные полуправильные многогранники изучали Платон и Архимед, которые жили еще до нашей эры, и в наши дни многие ученые занимаются изучением многогранников. Значит, интерес к многогранникам не пропадет никогда. Одно из самых главных свойств многогранников – это симметрия. Благодаря ей они и выглядят так необычно.
Свойства многогранников используются в различных сферах деятельности человека. Например, в архитектуре: почти все здания строятся с соблюдением симметрии. Многие знаменитые художники пишут свои картины, используя симметрию. За счет этого картины смотрятся более эффектно.
Таким образов вся наша жизнь наполнена многогранниками, с ними сталкивается каждый человек: и маленькие дети и зрелые люди.
© ООО «Знанио»
С вами с 2009 года.