Системы счисления
Оценка 4.8

Системы счисления

Оценка 4.8
docx
27.12.2019
Системы счисления
Системы счисления.docx

МБ НОУ «Гимназия № 70»

 

 

 

 

 

 

 

 

Системы счисления

 

Учитель  информатики Колегов А.Ю.

 

 

 

 

 

 

 

 

 

 


 

Двоичная система счисления

В этой системе счисления используются только две цифры: 0 и 1. Единица представляет собой степень двойки. Чем больше единиц в записи, тем больше число. На двоичной системе вычисления построена работа многих современных вычислительных машин. Например, число 1001 в двоичной системе счисления, это тоже самое что 9 в десятичной. Расчёт ведётся так: справа – налево в двоичном числе проставляются степени, затем единицы «заменяются» на двойки возводятся в степень и складываются между собой. Так, если мы проведём эту процедуру с числом 1001. То мы получим: 2 в 0 степени + 2 в третьей степени или 1 + 8 получим 9.

Пятеричная система счисления

В этой системе счисления существует всего пять цифр. Поэтому основанием данной системы является пятёрка. Чтобы возвести число из десятичной системы в пятеричную, необходимо делить это число на пять записывая остатки. После того, как при делении не останется целой части, деление прекращается, а остатки складываются снизу вверх. Например число 24( 10-чная система счисления) в пятеричной системе будет выглядеть как 44. 24/5 = 4 и 4 в остатке. 4/5 = 0 и 4 в остатке, остатки записываем считая снизу вверх. То есть, если бы при первом делении у нас получилось пять, то число выглядело бы как 45, а не 54.

Восьмеричная система счисления

В ней действуют все те же законы и правила, что и в пятеричной. Единственным отличием является только то, что основанием системы здесь является восьмёрка, тот же принцип, существует и во всех остальных системах счисления, для наглядности, переведём число 45 десятичной системы в восьмеричную: 45/8 = 5 и 5 остаток. 5/8 = 0 и 5 остаток. В итоге получается число 55. В шестнадцатеричной системе это число будет выглядеть как 2D( после 9 все числа заменяются на буквы английского алфавита по порядку A – 10 B -11 C – 12 и так далее).

Вариант №2

Системы счисления (СС) – это последовательность цифр и английских букв, записанная по определенным правилам.  СС бывают позиционными и непозиционными. Позиционные системы – это такие системы, в которых определенный символ числа имеет различное значение, находясь на различных позициях. Например, десятичная система является позиционной. Число 25 не равно числу 52, так как определенный символ, например 5, зависит от местоположения. В непозиционных системах счисления символ не зависит от расположения в числе.

Самые распространенные системы: десятичная, восьмеричная, двоичная, шестнадцатеричная. В десятичной системе алфавит состоит из цифр от 0 до 9. Можно производить над числами этой системы такие операции, как сложение, вычитание, деление и умножение.

Алфавит восьмеричной системы имеет 8 символов и состоит из цифр от 0 до 7; алфавит двоичной – из двух цифр: 0 и 1. Самая необычная СС – шестнадцатеричная. В ее алфавит входят арабские цифры от 0 до 9, а так же английские большие буквы от A до F. Операции над числами можно проводить такие же, как с числами десятичной системы счисления.

Самая неклассическая СС – это троичная система. Это позиционная СС с основанием 3. Она бывает двух видов: несимметричная и симметричная троичная система. В несимметричную систему входят цифры: 0,1,2. Симметричная система состоит из цифр -1,0,1. Такая система встречается в физике. Например, ток может течь как в одну сторону, так и в другую. В первом случае можно использовать цифру 1, во втором случае -1, а отсутствия тока можно обозначить цифрой 0.

Таким образом, системы счисления – это очень важный раздел в информатике. Одно и то же число в разной системе может быть представлено по-разному. В информатике самая распространенная система – двоичная. Компьютер работает с двоичным кодом, поэтому двоичная СС – одна из интересных и сложных тем в информатике.

 

Системы счисления

Системы счисления

Системы счисления

Системы счисления

Системы счисления

Системы счисления
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
27.12.2019