Статистическая обработка экспериментальных данных
Важным моментом задачи исследования и управления ТОУ является обработка большого потока экспериментальной информации, имеющей, как правило, случайный характер. И это обуславливает необходимость использования методов математической статистки для извлечения ценной информации из экспериментальных данных.
С учетом необходимости работы АСУТП в реальном масштабе времени, статистическая обработка информации должна быть оперативной. То есть обработка должна осуществляться в ходе эксперимента в темпе поступления информации непосредственно от исследуемых объектов за минимальное время и с получением результатов обработки в виде, удобном для дальнейшего использования. В связи с этим для обеспечения оперативности обработки экспериментальной информации должны использоваться простые методы и алгоритмы статистической обработки.
Целью оперативной статистической обработки экспериментальной информации в рамках анализа реализаций случайных процессов является получение системы статистических оценок с определенной доверительной вероятностью и точностью в реальном масштабе времени.
Оценки плотностей вероятностей эмпирических распределений в виде многомерного функционала при условии стационарности и эргодичности случайных процессов x1(t),x2(t) – является исчерпывающей характеристикой совокупности процессов {xk(t)}. Это дает возможность в рамках корреляционно-регрессионного анализа получить функции корреляции, дисперсий, спектральных плотностей, безусловных и условных математических ожиданий и других числовых характеристик, связанных с физическими параметрами объекта, а также ошибки (дисперсии или СКО), спектральные характеристики и т.д., по которым можно судить о качественном состоянии объекта.
Рассмотрим некоторые алгоритмы статистической обработки экспериментальной информации.
9.1.1 Методы определения функций распределения
Известны следующие методы определения функций распределения:
· метод изменения относительного времени пребывания реализации случайного процесса выше заданного уровня;
· метод, основанный на разложении функции распределения в ряд по ортонормированным функциям;
· метод, основанный на разложении функции распределения в ряд по моментам;
· метод гистограмм.
Первый метод основан на соотношении
1 – F(x0) = lim 1
T
{∆ti[x(t)>x0]} = lim t (9.4.26)
T
где F(x0) – интегральная функция распределения,
T- время анализа,
t = ∑ {·} – сумма интервалов времени в течении T, когда реализация x(t) превышает x0.
При достаточно больших T алгоритм вычисления ординат F(x0) определяется соотношением:
1 - F(x0) @
t (9.4.27)
T
Для вычисления ординат дифференциального закона распределения f(x) можно воспользоваться соотношением:
F(x) =
DF (x) @ åDtij
(8.4.28)
Dx TDx
где
åDtij -
суммарное время пребывания реализации
случайного процесса x(t) в равных интервалах различных уровнях.
Dx , задаваемых на
Второй метод основан на представлении плотности вероятности в виде
¥
f(x) = åCn Yn (x)
n=1
(9.4.29)
где
Yn (x) - система ортонормированных функций,
¥
Cn = òYn
¥
(x) f (x)dx - коэффициенты Фурье.
Поскольку x(t) – реализация случайного процесса, следовательно
Cn = M{Ψ[x(t)]}
где – M – символ математического ожидания
M{Ψn
[x(t)]} = lim 1
2T
T
òYn [x(t)]dt,
-T
т.е. коэффициенты Cn могут быть определены усреднением во времени функций Ψn[x(t)] исследуемого случайного процесса.
Таким образом, алгоритм нахождения оценки f(x) по этому методу следующий:
1. выполнить преобразование
yn(t) = Ψn[x(t)]
2. Получить оценку математического ожидания
Ĉn =
1 T
yn (t)dt
0
3. Найти оценку плотности вероятности
k
fˆ(x) = å
n=1
Ĉn Ψn(x)
Выбирая определенное число фильтров, можно получить
хорошее приближение
fˆ(x) к искомой f(x).
Оценка интегральной функции распределения находится из соотношения:
¥
Fˆ (x) = ò f (x)dx
-¥
Третий метод во многом аналогичен предыдущему и отличается лишь тем, что разложение искомой функции плотности вероятности производится по системе функций, не являющейся ортонормированной, вследствие чего алгоритм получается менее эффективным, чем в предыдущем случае.
Метод гистограмм наиболее часто используется на практике для оперативной оценки многомерных плотностей вероятностей.
Выборки случайного стационарного процесса кодируются, распределяются по фиксированным адресам ОЗУ, принимаемым за каналы гистограмм. Одновременно формируются числовые значения ординат гистограмм, реализующих алгоритм вычисления
оценки многомерной плотности вероятности
fˆ[xk (t)].
Числовое значение каждой ординаты в случае одномерного анализа характеризует частоту появления значений случайной функции в соответствующем интервале квантования по уровню. В случае многомерного анализа оно определяет частоту появления совместного события, при котором значения случайных функций будут находиться в определенных интервалах квантования по уровню (по амплитуде).
Практическая трудность использования алгоритмов вычисления многомерных гистограмм заключена в необходимом объеме фиксированных адресов. Для устранения этой трудности бывает целесообразным заменить оценки многомерной плотности вероятности системой оценок собственных и смешанных двумерных плотностей вероятностей, охватывающих все комбинации парных связей для нескольких аргументов. При такой замене необходимый объем памяти ЦВМ резко снижается.
9.4.2.Методы определения математического ожидания.
Наиболее распространенной задачей является задача определения математического ожидания или среднего значения случайного процесса m1{x}. Для определения m1{x}обычно применяют метод усреднения по времени, имеющий ряд модификаций.
При использовании данных в дискретные моменты оценка
m1{x} определяется соотношением:
mˆ1
{x} 1 N -1 x[iDt],
N
(9.4.30)
1=0
где N - количество наблюдений (N =
T - 1)
Dt
Возможно, нахождение оценки среднего значения по предварительно найденной оценке дифференциального закона
распределения fˆ(x) :
¥
mˆ1 {x}= ò x
-¥
fˆ(x)dx
(9.4.31)
Если
fˆ(x)
определяется по реализации случайного процесса
длительностью T одновременно для всех значений x, то оценка среднего, полученная этим способом, тождественно совпадает с оценкой, полученной усреднением этой реализации за тот же интервал времени.
Методы определения моментных характеристик порядка выше первого аналогичны методам, используемым при нахождении оценки m1{x}. Так, определение оценки для начального момента к-го порядка для дискретных наблюдений по формуле:
mˆ1
{x}=
1 N -1 xk [iDt]
N
i =0
Оценки первых четырех начальных момента используют для определения оценок дисперсии, асимметрии, эксцесса.
Оценка дисперсии:
sˆ 2 {x}= mˆ {x} – ( mˆ {x}) 2 (9.4.32) Оценка коэффициента асимметрии:
{x} Kˆ {x} =
[mˆ {x}- 3mˆ {x}mˆ {x} + 2(mˆ {x})3 ]
(9.3.33)
Оценка эксцесса:
mˆ {x}- 4mˆ {x}mˆ {x} + 6mˆ {x}(mˆ {x}) 2 - 3(mˆ {x}) 4
gˆ2 {x}= 4 3 1 2 1 1
(9.4.34)
2 2
[mˆ 2 {x}- (mˆ {x}) ]
Вычисление оценки условной дисперсии производится по формуле:
sˆ 2 {x(t) yn(t + t ) } = mˆ {x(t)/ y (t +
t ) } – [ mˆ {x(t)/ y (t +
t ) }] 2
(9.4.35)
9.4.3 Методы определения функций корреляции
Задача экспериментального определения функций корреляции является одной из наиболее важных и широко распространенных на практике исследования случайных процессов. Разработаны многочисленные методы определения корреляционных функций. Рассмотрим наиболее распространенные из этих методов.
Мультипликационный метод является основным методом экспериментального определения функций корреляций. В случае дискретных наблюдений оценки корреляционной функции вычисляют по формуле:
Rˆ (t ) = 1 Nå-n-1
Dt]y[(i + n)Dt],
t = nDt
(9.4.36)
xy N - n
i =0
x[i
При этом предполагается, что m1{x} и m1{y} известны и равны нулю. Рассмотрим алгоритм машинной оперативной корреляционной обработки случайного дискретного процесса, представленный в виде последовательности {xij} выборки, по алгоритму
ˆ t = 1 ån + t
(9.4.37)
Rxx ( )
n i=1
x (t)xi (t )
Метод разложения функции корреляции в ряд. Этот метод также имеет широкое распространение. Чаще всего используется разложение по ортогональным полиномам Лаггера Ln(at ).
Известно, что автокорреляционная функция может быть представлена в виде ряда
¥
где
Rxx (t ) = åbn Ln (at )
n=0
¥ T
-at
(9.4.37)
bn = ò Rxx (t )e
0
¥
aLn(at )dt = ò x(t) yn (t)dt
0
yn (t) = ò x(t - t )ae -at Ln (at )dt
0
Таким образом, задача получения коэффициентов bn может быть решена путем усреднения по времени произведений исходной реализации x(t) и этой же реализации, пропущенной через линейный фильтр с весовой функцией:
h (t ) = ae -at L
(at )
что соответствует передаточной функции фильтра:
apn
Wn = (a + p) n+1
По найденным значениям можно определить искомую функцию корреляции
k -1
Rxx (t ) = bn Ln (at ),
n
(9.4.38)
где k - число фильтров Лаггера (k = 5….6).
Основным достоинством указанного метода является отсутствие элементов задержки.
Иногда может оказаться удобным и разложение Маклорена. В этом случае
Rxx (t )
в ряд
Rxx (t ) =
x 2 (t)
+ å
n=1
x(t)x
(2n)
a 2n
(t) ,
(2n)!
(9.4.39)
где
x( 2n)
(t) =
d 2n x(t)
dt 2n
Этот метод удобен в тех случаях, когда могут быть непосредственно измерены производные случайного процесса.
Метод, основанный на использовании двумерной плотности вероятности, позволяет вычислить Rxy (t ) из соотношения:
¥ ¥
Rxy (t ) = ò ò xyf (x, y,t )dxdy,
-¥-¥
(9.4.40)
где f(x,y,τ) – двумерная плотность вероятности процессов
y(t +τ) и x(t).
Следовательно, для определения оценки корреляционной функции необходимо иметь оценку двумерной плотности вероятности.
Метод дискретных апериодических выборок использует следующее соотношение для корреляционной функции
Rxy (t )
h N -1
= lim
i=0
y(ti
+ t ),
(9.4.41)
где
ti -
моменты времени, в которых процесс x(t) пересекает
уровень η, т.е. x(ti) = η
η – константа, принимающая любые значения, кроме нуля.
Для нормальных случайных процессов показано, что
существует оптимальное значение константы η, равное
2 ´ s x , при
котором ошибка в вычислении функции корреляции за конечное время анализа минимальна.
9.4.4Методы определения спектральной плотности
Спектральная плотность S( ) позволяет судить о частотных свойствах случайного процесса. Она характеризует его интенсивность на различных частотах или, иначе, среднюю мощность, приходящуюся на единицу полосы частот.
Поскольку спектральная и корреляционная функция случайного стационарного процесса связаны прямым и обратным соотношениями Винера-Хинчина
S (w ) = 1
2p
¥
¥
ò R(t )e
-¥
- jwt dt
(9.4.42),
R(t ) = ò S (w )eiwt dw
-¥
то при изучении частотных свойств процесса достаточно определить
любую из этих функций. Однако, в ряде случаев определение является более предпочтительным.
S (w )
Алгоритмы определения спектральной плотности можно
разделить на четыре основные группы:
· алгоритмы, построенные на принципе узкополосной фильтрации;
· алгоритмы, использующие преобразование Фурье от реализации случайного процесса;
· алгоритмы, использующие аппроксимацию ортогональными полиномами,
S (w )
· алгоритмы, основывающиеся на преобразовании Фурье от
корреляционной функции.
Различают также методы получения спектральных характеристик последовательного действия, в которых анализ происходит последовательно на каждой частоте, и параллельного
действия, которые позволяют анализировать
S (w )
параллельно во
времени для нескольких значений частот. При этом следует
отметить, что время изменения
S (w )
для последовательного метода
значительно больше, чем для параллельного.
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.