Статья "Мир математик"

  • docx
  • 22.02.2024
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Мир математики.docx

                                               Учитель математики       Абуева Б.А.

 

 МИР МАТЕМАТИКИ

Эта наука лежит в основе нашего мира, поэтому, я думаю, что положение любого человека в нем прямо пропорционально его пониманию математики.

Математика не нужна разве что поэтам, художникам, исполнителям песен — тем, кто имеет дело с вдохновением. Всем остальным людям, особенно если их жизнь связана с чем-то материальным, с окружающим миром и его законами, математические знания точно пригодятся. Дизайнер Артемий Лебедев считал, что математика ему не нужна совсем, но, когда мы с ним побеседовали, я его частично убедил в том, что даже в дизайнерском деле она может быть полезна.

Хороший вопрос: нужна ли математика в спорте? Я бы сказал, да. Например, марафонцам в беге на сверхдлинные дистанции или лыжникам важно понимать, укладываются ли они в график. Компьютера и калькулятора, понятно, под рукой нет, но в голове есть простая формула, которая поможет высчитать, укладывается ли спортсмен в отведенное время. Много математики в спортивном ориентировании — чего только стоит вычисление правильного градуса угла. Да и в футболе без базовых знаний математики не обойтись: важно ведь не просто послать мяч, а сделать это с умом, по правильной траектории.

Нужна ли сегодня фундаментальная математика?
Казалось бы, зачем в наш век современных технологий знать основы, которые закладывали Ферма, Ньютон, Лейбниц, Гаусс, Эйлер, нужно ли сегодня изучать их наследие? Ответ: конечно, нужно. Все современные алгоритмы имеют внутреннюю логику, не понимая которую вы не сможете ими пользоваться. Важно вникать в фундаментальную математику как в основу бытия. А из основы уже можно вытянуть любую ниточку.

Чем математика отличается от других наук?
Математика — очень сложная для постижения наука. Наверное, с ней может сравниться только физика, и то она все же уступает. Погружение в какую-либо науку я бы сравнил с такой ситуацией: ты поднимаешься по лестнице, открываешь дверь и выходишь на этаж с множеством других дверей. Это стандартный путь изучения любой дисциплины: ты устал, пока поднимался, но на финише ты собой доволен. Даже можешь открыть много смежных дверей в другие науки и все поймешь.

Изучение математики — это когда ты долго поднимаешься по лестнице, хочешь выйти на этаж и понимаешь, что вместо открытого пространства там стены, а на них еще более крутые лестницы, по которым нужно карабкаться. Ты лезешь дальше, с огромным трудом достигаешь следующего этажа и думаешь, что здесь-то ты уже можешь говорить на одном языке с великими учеными — с Пуанкаре, Перельманом, но вокруг опять только стены и лестница. И так этаж за этажом. У тебя нет никакого раздолья, нет награды за твои труды. Что ты получаешь за свое стремление вверх? Пропуск к еще большим трудам. Вот так устроена математика. За это мы ее обожаем. Потому что она никогда не дает расслабляться.

Из каких уровней состоит математика?
Первый этаж математики — это абстракция числа как такового. Это идея о том, что существуют отдельно взятые предметы, и мы можем посчитать, сколько их. Такова первая ступень математики, которую, конечно, проходят все. Хотя, если верить Аурэлю Фоссу — автору книги «Сущность математики», на земле до сих пор остались некие сумеречные народы, которые для счета птиц и чумов, к примеру, используют разные числительные. Они не понимают, как можно считать разные предметы, используя одну систему. Значит, эти народности еще не вышли на первый «этаж математики». А все цивилизованные народы давно на нем стоят.

Второй этаж математики обусловлен появлением неизвестных — x, y, z и других. Появляются такие задачи, для решения которых нужно обозначить хоть что-то за x и дальше «выкрутиться» через решение уравнения. В более сложных ситуациях возникают системы уравнений с двумя неизвестными, с тремя и так далее — когда вы занимаетесь большой наукой, будет столько неизвестных, сколько вам нужно. На втором этаже вы спокойно ориентируетесь с неизвестными, применяете формулы сокращенного умножения, разность квадратов, бином Ньютона. В принципе, взойти на этот этаж достаточно легко.

Третий этаж — это исследование операций над цифрами и буквами. Плюс, минус, умножить, разделить, возвести в степень; возникает абстрактное понятие группа, кольцо, поле, модуль и так далее. Этими абстрактными понятиями оперирует вся современная математика. Если вы смогли их освоить, то я вас поздравляю, можно идти на мехмат и пытаться хотя бы первые два года на нем учиться.

Так можно продолжать очень долго! Четвертый этаж — это гомологии и когомологии, с которыми я сейчас пытаюсь разобраться. А пятый этаж — это категории. Но в них я ничего не понимаю, и, наверное, еще долго не пойму. Дальше, говорят, возникают этажи, вход на которые открыт только гениальным филдсовским лауреатам.

Филдсовская премия (Fields Medal) — самая престижная международная премия и медаль в области математики. Вручается один раз в четыре года на каждом международном математическом конгрессе 2–4 молодым ученым не старше 40 лет (или достигших 40-летия в год вручения премии).

Приз и медаль названы в честь Джона Филдса, президента VII международного математического конгресса, проходившего в 1924 году в Торонто.

Математики сами надстраивают эти сложнейшие этажи один за другим. Фактически математика — это наука для тех, кто хочет всю жизнь думать и никогда не останавливаться ни на чем.


Экономика инноваций
Абель вместо Нобеля: кому и за что вручили главную математическую награду
Зашита ли математика в стандарты красоты?
Я в это не верю. Мне кажется, что гениальная мелодия или картина — штучная вещь, а стандарта красоты вообще не может быть. Нам обычно все-таки нравится что-то непредсказуемое. То, что построено по каким-то формулам, не привлекает. Наоборот, настоящая красота рождается там, где нарушается конструкция.

Любой человек может сказать, что картина идеальна, потому что написана по правилам золотого сечения. Это уловка мозга — мы пытаемся постфактум объяснить то, что нам кажется красивым. На самом деле, истинная красота непредсказуема, немоделируема и нематематична. Так что золотое сечение переоценено. Но мне бы хотелось отметить, что оно играет ключевую роль при построении правильного пятиугольника циркулем и линейкой, а это важнее любых «народно-хозяйственных задач». Это очень круто и суперкрасиво.