Министерство образования и науки РК
СевероКазахстанский университет
Им. М. Козыбаева
Факультета информационных технологий
Кафедры математики
Урокигра «Что мы знаем о параллельности?»
Выполнила: студентка 4го курса
группы М (о)10 Гаврик Н. С.
Проверили: учитель математики
школылицея «Дарын»
Величко Оксана Николаевна,
доцент Рванова Алла Сергеевна
1 «Параллельность прямых» с использованием информационно
коммуникационных технологий в образовании.
Петропавловск, 2014
Конспект урока по теме
Геометрия 7 класс.
Тема урока: «Параллельность прямых».
Цели урока:
обобщить знания по теме «Параллельность»;
формировать умение выбирать правильный ответ при выполнении
задания из теста;
повысить интерес к предмету;
воспитывать чувство ответственности;
воспитывать культуру речи;
воспитывать чувство сплоченности.
Тип урока: урокигра.
Оборудование: мультимедийные средства, презентация «Что мы знаем о
параллельности?»; в качестве учебного пособия используется учебник
геометрии 7 класса авт. Погорелов и др.
Ход урока:
Урокигра проводится после изучения всего материала по теме
«Параллельность».
Урок построен в виде игры. За основу взяты правила игры «Кто хочет
стать миллионером?». Для урока взята именно эта игра, т. к. она напоминает
тест с выбором ответа. Ребятам предстоит сдавать ГИА, а эта игра дает
возможность потренироваться выбирать правильный ответ.
Можно воспользоваться тремя подсказками по 1 разу:
1) 50 : 50 – убираются два неверных ответа.
2) «Звонок другу»
возможность проконсультироваться с
одноклассником (только с одним, другие ребята подсказывать не могут).
3) Обращение к классу – голосованием выбирается правильный ответ.
Первые пять вопросов теоретические, на них отвечают по желанию
учащиеся, поднявшие руку.
Следующие пять вопросов – полу устные задачи. Отвечают тоже
желающие.
Последние пять вопросов требуют решения у доски. Их решают те
учащиеся, кого учитель вызвал к доске.
Особенно активным учащимся, работавшим устно, и тем, кто решал задачи
у доски, учитель выставляет отметки в журнал.
2 Если будут вопросы, на которые дан неверный ответ, игра продолжается, а
из итоговой отметки отнимаются 0,2 балла за каждый неправильный ответ.
Поэтому в игре отсутствует несгораемый уровень (если вы уверены в ответах
своих учеников, то можете отметки «3» и «4» сделать несгораемыми).
Перед уроком ребятам выдается шаблон к задачам, чтобы на уроке они не
тратили время на выполнение рисунков.
Содержание игры:
№1 (на 1)
Две прямые на плоскости называются параллельными, если они…
А) перпендикулярны;
Б) не пересекаются;
В) пересекаются;
Г) не лежат в одной плоскости.
Ответ: Б
№2 (на 1,5)
Через точку, не лежащую на данной прямой, проходит только одна
прямая, параллельная данной.
А) свойство параллельных прямых;
Б) признак параллельных прямых;
В) определение параллельных прямых;
Г) V постулат Евклида.
Ответ: Г
№3 (на 2)
Если две параллельные прямые пересечены секущей, то накрест лежащие
углы равны.
А) теорема, обратная признаку параллельности;
Б) признак параллельности;
В) определение параллельных прямых;
Г) Vпостулат Евклида.
Ответ: А
№4 (на 2,5)
Если при пересечении двух прямых секущей сумма односторонних углов
равна 1800,
то прямые параллельны.
А) теорема, обратная признаку параллельности;
Б) V постулат Евклида.
В) определение параллельных прямых;
Г) признак параллельности.
Ответ: Г
№5 (на 3)
Если прямая пересекает одну из параллельных, то она….
А) параллельна другой;
3 Б) совпадает с другой;
В) пересекает и другую;
Г) ничего не делает с другой прямой.
Ответ: В
№6 (на 3,2)
Параллельны ли прямые а и b? (рис.1)
рис.1
c
a
b
650
1250
А) нет, т. к. сумма односторонних углов не равна 1800;
Б) да, т. к. сумма односторонних углов равна 1800;
В) нет, т. к. накрест лежащие углы не равны;
Г) да, т. к. накрест лежащие углы равны.
Ответ: А
№7 (на 3,4)
Параллельны ли прямые а и b? (рис.2)
рис.2
c
a
b
600+а
1200 а
А) да, т. к. сумма односторонних углов равна 1800;
Б) нет, т. к. сумма односторонних углов не равна 1800;
В) да, т. к. накрест лежащие углы равны;
Г) нет, т. к. накрест лежащие углы не равны.
Ответ: В
№8 (на 3,6)
a || b. <1 + <2 = 960 Найдите <3. (рис.3)
4 рис.3
c
3
1
a
b
2
А) 840;
Б) 1320;
В) 1220;
Г) 480.
Ответ: Б
№9 (на 3,8)
Чтобы прямые m и n пересекались, угол 2 не должен быть равен…(рис.4)
рис.4
k
1080
2
m
n
А) 1080;
Б) 620;
В) 1800;
Г) 720.
Ответ: Г
№10 (на 4)
Найдите угол 1. (рис.5)
c
1100
a
b
1450
1
d
А) 1100;
рис.5
350
5 Б) 1450;
В) 1700;
Г) 700.
Ответ: А
№11 (на 4,2)
Параллельны ли прямые а и b? (рис.6)
рис.6
a
b
P
E
M
А) да, т. к. сумма односторонних углов равна 1800;
Б) нет, т. к. сумма односторонних углов не равна 1800;
В) да, т. к. накрест лежащие углы равны;
Г) нет, т. к. накрест лежащие углы не равны.
Ответ: В
№12 (на 4,4)
BC || AD, BC = AD Доказать: треугольники АВС и ADC равны. (рис.7)
рис.7
B
C
A
D
А) треугольники равны по 3 сторонам;
Б) треугольники равны по стороне и 2 прилежащим углам;
В) треугольники равны по 2 сторонам и углу между ними;
Г) треугольники не равны.
Ответ: В
№13 (на 4,6)
AB = CD, BC = AD Доказать: AB || CD. (рис.8)
6 рис.8
B
A
C
D
А) прямые параллельны, т. к. соответственные углы равны;
Б) прямые параллельны, т. к. накрест лежащие углы равны;
В) прямые параллельны, т. к. сумма односторонних углов равна 1800;
Г) прямые не параллельны.
Ответ: Б
№14 (на 4,8)
Найдите угол 1. (рис.9)
рис.9
T
N
1120
1
K
780
680
M
P
А) 1020;
Б) 680;
В) 1120;
Г) 390.
Ответ: Г
№15 (на 5)
a || b Найти: угол МОЕ. (рис.10)
7 рис.10
M
О
А
В
E
a
b
А) нельзя найти;
Б) 1800;
В) 900;
Г) 450.
Ответ: В
Итог урока.
Сегодня на уроке мы познакомились с понятиями «рациональные
выражения», «рациональная дробь», «допустимые значения переменных»,
«тождество», «тождественные выражения» и с основным свойством
рациональных дробей; научились свободно использовать основное свойство
рациональных дробей, изменять знаки дробей.
Рефлексия
Продолжите предложение на уроке
мне понравилось___________________________________________
узнал много ______________________________________________
я заинтересовался__________________________________________
8
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Урок-игра «Что мы знаем о параллельности?»
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.