Вопрос 47.doc

  • doc
  • 13.05.2020
Публикация в СМИ для учителей

Публикация в СМИ для учителей

Бесплатное участие. Свидетельство СМИ сразу.
Мгновенные 10 документов в портфолио.

Иконка файла материала Вопрос 47.doc

Постановка задачи кодирования, средняя длина кода, оптимальность, первая теорема Шеннона.

Как отмечалось при рассмотрении исходных понятий информатики, для представления дискретных сообщений используется некоторый алфавит. Однако однозначное соответствие между содержащейся в сообщении информацией и его алфавитом отсутствует. В целом ряде практических приложений возникает необходимость перевода сообщения хода из одного алфавита к другому, причем, такое преобразование не должно приводить к потере информации.

Введем ряд с определений. Будем считать, что источник представляет информацию в форме дискретного сообщения, используя для этого алфавит, который в дальнейшем условимся называть первичным. Далее это сообщение попадает в устройство, преобразующее и представляющее его в другом алфавите - этот алфавит назовем вторичным.

Код - (1) правило, описывающее соответствие знаков или их сочетаний первичного алфавита знакам или их сочетаниям вторичного алфавита.

(2) набор знаков вторичного алфавита, используемый для представления знаков или их сочетаний первичного алфавита.

Кодирование - перевод информации, представленной сообщением в первичном алфавите, в последовательность кодов.

Декодирование - операция, обратная кодированию, т.е. восстановление информации в первичном алфавите по полученной последовательности кодов.

Кодер - устройство, обеспечивающее выполнение операции кодирования.

Декодер - устройство, производящее декодирование.

Операции кодирования и декодирования называются обратимыми, если их последовательное применение обеспечивает возврат к исходной информации без каких-либо ее потерь.

Примером обратимого кодирования является представление знаков в телеграфном коде и их восстановление после передачи. Примером кодирования необратимого может служить перевод с одного естественного языка на другой - обратный перевод, вообще говоря, не восстанавливает исходного текста. Безусловно, для практических задач, связанных со знаковым представлением информации, возможность восстановления информации по ее коду является необходимым условием применения кода, поэтому в дальнейшем изложении ограничим себя рассмотрением только обратимого кодирования. Кодирование предшествует передаче и хранению информации. При этом, как указывалось ранее, хранение связано с фиксацией некоторого состояния носителя информации, а передача - с изменением состояния с течением времени (т.е. процессом). Эти состояния или сигналы будем называть элементарными сигналами -  именно их совокупность и составляет вторичный алфавит.

Не обсуждая технических сторон передачи и хранения сообщения (т.е. того, каким образом фактически реализованы передача-прием последовательности сигналов или фиксация состояний), попробуем дать математическую постановку задачи кодирования.

Пусть первичный алфавит А состоит из N знаков со средней информацией на знак I(A), а вторичный алфавит В - из М знаков со средней информацией на знак I(B). Пусть также исходное сообщение, представленное в первичном алфавите, содержит п знаков, а закодированное сообщение - т знаков. Если исходное сообщение содержит I1(A) информации, а закодированное - 12(В), то условие обратимости кодирования, т.е. неисчезновения информации при кодировании, очевидно, может быть записано следующим образом: I1(A)<=I2(B)

смысл которого в том, что операция обратимого кодирования может увеличить количество информации в сообщении, но не может его уменьшить.

 Однако каждая из величин в данном неравенстве может быть заменена произведением числа знаков на среднее информационное содержание знака, т.е.: nI(A)<=mI(B) или I(A)<=m/nI(B). Отношение т/п, очевидно, характеризует среднее число знаков вторичного алфавита, которое приходится использовать для кодирования одного знака первичного алфавита - будем называть его длиной кода или длиной кодовой цепочки и обозначим К(А,В). Следовательно K(A,B)>1              (1)

Кодовая цепочка – отрезок сообщения в первичном алфавите, изображающий один знак. Обычно в приложениях число N>M.

Проблема выбора (или построения) наилучшего варианта - будем называть его оптимальным кодом. Выгодность кода при передаче и хранении информации - это экономический фактор, так как более эффективный код позволяет затратить на передачу сообщения меньше энергии, а также времени и, соответственно, меньше занимать линию связи; при хранении используется меньше площади поверхности (объема) носителя. При этом следует сознавать, что выгодность кода не идентична временной выгодности всей цепочки кодирование-передача-декодирование; возможна ситуация, когда за использование эффективного кода при передаче придется расплачиваться тем, что операции кодирования и декодирования будут занимать больше времени и иных ресурсов.

Кmin(А,В)=I(A)/I(B)      (2)

Код с меньшей длиной цепочки будет необратимым.

Первая теорема Шеннона, которая называется основной теоремой о кодировании при отсутствии помех, формулируется следующим образом:

При отсутствии помех всегда возможен такой вариант кодирования сообщения, при котором среднее число знаков кода, приходящихся на один знак первичного алфавита, будет сколь угодно близко к отношению средних информации на знак первичного и вторичного алфавитов.

     Теорема открывает принципиальную возможность оптимального кодирования, т.е.

построения кода со средней длиной Кmin(А,В). Имеются два пути сокращения Кmin(А,В):

уменьшение числителя;

• увеличение знаменателя - для этого необходимо применить такой способ кодирования, при котором появление знаков вторичного алфавита было бы равновероятным.