Задачи на проценты, сплавы и смеси:
1. Смешав 60%−ый и 30%−ый растворы кислоты и добавив 5 кг чистой воды, получили 20%−ый раствор кислоты. Если бы вместо 5 кг воды добавили 5 кг 90%−го раствора той же кислоты, то получили бы 70%−ый раствор кислоты. Сколько килограммов 60%−го раствора использовали для получения смеси?
Решение:
Пусть x кг и y кг — массы первого и второго растворов, взятые при смешивании. Тогда х+у+5 кг — масса полученного раствора, содержащего 0,6х+0,3у кг кислоты. Концентрация кислоты в полученном растворе 20%, откуда
Решим систему двух полученных уравнений:
Ответ: 2 кг.
2. Имеется два сплава с разным содержанием меди: в первом содержится 60%, а во втором — 45% меди. В каком отношении надо взять первый и второй сплавы, чтобы получить из них новый сплав, содержащий 55% меди?
Ответ: 2:1
3. Свежие фрукты содержат 80% воды, а высушенные — 28%. Сколько сухих фруктов получится из 288 кг свежих фруктов?
Ответ: 80 кг
4. Имеются два сосуда, содержащие 4 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 57% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 60% кислоты. Сколько килограммов кислоты содержится в первом растворе?
Ответ: 2,6 кг
Задачи на движение по прямой:
1. Из пунктов А и В, расстояние между которыми 19 км, вышли одновременно навстречу друг другу два пешехода и встретились в 9 км от А. Найдите скорость пешехода, шедшего из А, если известно, что он шёл со скоростью, на 1 км/ч большей, чем пешеход, шедший из В, и сделал в пути получасовую остановку.
Решение:
Пусть скорость пешехода, шедшего из пункта A, равна х км/ч, х>1. Тогда скорость пешехода, шедшего из пункта B, равна (х-1) км/ч. Составим таблицу по данным задачи:
Так
как пешеход, шедший из A, сделал по пути остановку на ч.,
а вышли пешеходы одновременно, можно составить следующее уравнение:
Ответ: 6 км/ч.
2. Расстояние между городами А и В равно 490 км. Из города А в город В со скоростью 55 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города В выехал со скоростью 90 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся?
Ответ: 220 км
3. Из пункта А в пункт В, расстояние между которыми 13 км, вышел пешеход. Одновременно с ним из В в А выехал велосипедист. Велосипедист ехал со скоростью, на 11 км/ч большей скорости пешехода, и сделал в пути получасовую остановку. Найдите скорость пешехода, если известно, что они встретились в 8 км от пункта В.
Ответ: 5 км/ч
4. Два человека одновременно отправляются из одного и того же места по одной дороге на прогулку до опушки леса, находящейся в 3,7 км от места отправления. Один идёт со скоростью 3,3 км/ч, а другой — со скоростью 4,1 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от точки отправления произойдёт их встреча? Ответ: 3,3 км
Задачи на движение по воде:
1. Расстояние между пристанями А и В равно 80 км. Из А в В по течению реки отправился плот, а через 2 часа вслед за ним отправилась яхта, которая, прибыв в пункт В, тотчас повернула обратно и возвратилась в А. К этому времени плот прошел 22 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.
Решение.
Пусть искомая скорость равна v км/ч, v > 2. Cоставим таблицу по данным задачи:
Таким образом, скорость яхты в
неподвижной воде равна 18 км/ч.
Ответ: 18 км/ч.
2. Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 2 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч?
Ответ: 9 км
3. От пристани А к пристани В, расстояние между которыми равно 153 км, отправился с постоянной скоростью первый теплоход, а через 4 часа после этого следом за ним, со скоростью, на 16 км/ч большей, отправился второй. Найдите скорость первого теплохода, если в пункт В оба теплохода прибыли одновременно.
Ответ:18 км/ч
Задачи на совместную работу:
1. На изготовление 231 детали ученик тратит на 11 часов больше, чем мастер на изготовление 462 таких же деталей. Известно, что ученик за час делает на 4 детали меньше, чем мастер. Сколько деталей в час делает ученик?
Решение.
Предположим, что ученик делает х деталей в час, x>1. Тогда мастер делает х+4 детали в час.
Составим таблицу по данным задачи:
Корни полученного квадратного уравнения: −28 и 3. Отбрасывая отрицательный корень, находим, что ученик делает в час 3 детали.
Ответ: 3.
2. Дима и Саша выполняют одинаковый тест. Дима отвечает за час на 12 вопросов теста, а Саша — на 22. Они одновременно начали отвечать на вопросы теста, и Дима закончил свой тест позже Саши на 75 минут. Сколько вопросов содержит тест?
Ответ: 33
3. Две трубы наполняют бассейн за 8 часов 45 минут, а одна первая труба наполняет бассейн за 21 час. За сколько часов наполняет бассейн одна вторая труба?
Ответ: 15 ч
© ООО «Знанио»
С вами с 2009 года.