Պյութագորասի թեորեմը
Երկրաչափության ամենահայտնի թեորեմներից է Պյութագորասի թեորեմը, որի հայտնագործությունն ու ապացույցը վերագրվում է Պյութագորասին:
Ուղղանկյուն եռանկյան ներքնաձիգի վրա կառուցված քառակուսու մակերեսը հավասար է նրա էջերի վրա կառուցված քառակուսիների մակերեսների գումարին:
Մաթեմատիկայի պատմության մեջ գոյություն ունեն պնդումներ այն մասին, որ այդ թեորեմը գիտեին դեռևս Պյութագորասից շատ առաջ: Մասնավորապես, եգիպտացիները գիտեին, որ 3, 4 և 5 կողմերով եռանկյունը ուղղանկյուն եռանկյուն է:
Ներկայումս թեորեմը հնչում է այսպես՝
Ուղղանկյուն եռանկյան ներքնաձիգի քառակուսին հավասար է եռանկյան էջերի քառակուսիների գումարին՝
Հայտնի են այս թեորեմի բազմաթիվ ապացույցներ, սակայն ամենաակնառու ապացույցներից մեկը հիմնված է մակերեսների վրա:
Տեղի ունի նաև Պյութագորասի թեորեմի հակադարձ թեորեմը, որը կիրառվում է որպես ուղղանկյուն եռանկյան հայտանիշ:
Եթե եռանկյան մի կողմի քառակուսին հավասար է մյուս երկու կողմերի քառակուսիների գումարին, ապա այդ եռանկյունը ուղղանկյուն եռանկյուն է:
Օրինակ
Արդյո՞ք 8 սմ, 7 սմ և 9 սմ կողմերով եռանկյունը ուղղանկյուն եռանկյուն է:
Ընտրում ենք մեծ կողմը և ստուգում Պյութագորասի թեորեմի տեղի ունենալը՝
Հետևաբար, եռանկյունը ուղղանկյուն չէ:
Արդյո՞ք 5 սմ, 12 սմ և 13 սմ կողմերով եռանկյունը ուղղանկյուն եռանկյուն է:
Ընտրում ենք մեծ կողմը և ստուգում Պյութագորասի թեորեմի տեղի ունենալը՝
169=144+25
Հետևաբար, եռանկյունը ուղղանկյուն է:
Материалы на данной страницы взяты из открытых источников либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.