Формирование регулятивных УУД на уроках математики
Оценка 4.6

Формирование регулятивных УУД на уроках математики

Оценка 4.6
Педсоветы
docx
математика
5 кл—9 кл
11.02.2017
Формирование регулятивных УУД на уроках математики
Публикация является частью публикации:
Формирование регулятивных УУД на уроках математики.docx
Формирование регулятивных УУД на уроках математики Функциональное   назначение   УУД   заключается:   в   обеспечении   возможностей   учащегося самостоятельно   осуществлять   деятельность   учения,   ставить   учебные   цели,   искать   и   использовать необходимые   средства   и   способы   достижения,   контролировать   и   оценивать   процесс   и   результаты деятельности; в создании условий для гармоничного развития личности и ее самореализации на основе готовности к непрерывному образованию; в обеспечении успешного усвоения знаний, умений и навыков и формирование компетентностей в любой предметной области. Регулятивные УУД и виды деятельности: ­ способность к организации своей деятельности (самостоятельное составление плана выполнения заданий); ­способность принимать, сохранять и следовать учебным целям; ­ умение действовать по плану (решение задачи, вычисление выражений  в два и более действий); ­умение контролировать процесс и результаты своей деятельности (проверка вычислений); ­умение   адекватно   воспринимать   отметки   и   оценки   (самооценка   и   сравнение   результатов самооценки с отметкой учителя); ­ умение  различать субъективную  сложность задачи и объективную  трудность (анализ  задачи, определение типа задачи); ­ готовность к преодолению трудностей (решение нестандартных задач, поиск новых способов решения). Регулятивные   УУД   отражают   способность   обучающегося   строить   учебно­познавательную деятельность, учитывая все ее компоненты (цель, мотив, прогноз, средства, контроль, оценка). Формировать УУД  призваны  все  предметы  учебного  плана.  Большая  роль  при  формировании познавательных и регулятивных универсальных учебных действий отводится математике. Поскольку в первую очередь, при обучении математике у учащихся развиваются такие свойства интеллекта, как:  математическая   интуиция   (на   методы   решения   задач,   на   образы,   свойства,   способы доказательства, построения);  логическое   мышление   (понимание   понятий   и   общепонятийных   связей,   владение   правилами логического вывода, понимание и сохранение в памяти важных доказательств);  пространственное   мышление   (построение   пространственных   абстракций,   анализ   и синтез геометрических образов, пространственное воображение);   техническое мышление, способность к конструктивно­математической деятельности (понимание сущности   скалярных   величин,   умение   определять,   измерять   и вычислять   длины,   площади,   объемы геометрических   фигур,   умение   изображать   геометрические   фигуры   и выполнять   геометрические построения, моделировать и конструировать геометрические объекты); комбинаторный   стиль   мышления   (поиск   решения   проводится   на основе   целенаправленного перебора возможностей, круг которых ограничен определенным образом); алгоритмическое   мышление,   необходимое   для   профессиональной   деятельности   в современном обществе; владение   символическим   языком   математики   (понимание   математических   символов,   умение записывать в символической форме решения и доказательства); математические   способности   школьников   (способности   к абстрагированию   и оперированию формальными структурами, обобщению). Так, решение любой математической задачи требует чёткой самоорганизации: точного осознания цели,   работы   либо   по готовому   алгоритму   (плану),   либо   по самостоятельно   созданному,   проверки результата действия (решения задачи), коррекции результата в случае необходимости. Рассмотрим алгоритм общего приема решения математической задачи:  1. Изучить содержание задачи. 2. Если нужно провести анализ — поиск решения. 3. На основе анализа составить план решения или сформулировать известный план решения задач данного класса. 4. Решить задачу по составленному плану. 5. Если нужно, проверить или исследовать решение. 6. Рассмотреть другие возможные способы решения, выбрать наиболее рациональный. 7. Записать ответ. Примеры заданий по развитию универсальных учебных действий Развиваемые умения Планируемый результат Примеры исследовательских заданий по математике, 5­6 класс Развитие   умений   видеть проблемы   Формирование   и   развитие способности изменять собственную   точку   зрения, смотреть объект исследования с разных сторон на     1.   Рассмотреть   понятие   «масштаб»   с точки зрения географа, математика и фотографа. 2. «Нет ли здесь ошибки: Вычитаемые и   прибавляемые,   есть   такие   числа?», «Какой смысл содержит фраза: «Твой ум без числа ничего не представляет? (Н. Кузанский, немецкий философ)» Развитие   умений   выдвигать гипотезы Формирование  логического  и интуитивного мышления. Развитие   умения   задавать вопросы   Формирование умения поиска ответа, пробуждая потребность познаний, приобщая   школьника   к умственному труду   1.   Дан   квадрат   со   стороной   5Х5 клеток,   в   каждую   из   которых случайным   образом   вписаны   числа. Требуется   найти   в   таблице последовательность   чисел,   сделать вывод   о   наиболее   эффективном способе выстраивания последовательности чисел в таблице. 2. Найти правило, закономерность. 1. Задание «Угадай, о чем спросили?» Ученик   выходит   к   доске,   вслух отвечает   на   вопрос,   написанный   на карточке. Например:   это число делится на два (надо угадать   вопрос   —   какое   число называется четным?) надо   к   собственной   скорости прибавить скорость течения (как найти скорость по течению) и т.д. 2.   «Определи   понятие»,   при   этом задаются   только   вопросы:   Зачем? Почему? Как? Что?   Формирование регулятивных действий    обеспечивает использование действий контроля, приемы самопроверки и взаимопроверки заданий. Учащимся предлагаются тексты для проверки, содержащие различные   виды   ошибок   (графические,   вычислительные   и т. д.)   Для   решения   этой   задачи   можно совместно с учащимися составить правила проверки текста, определяющие алгоритм действий.  В процессе   работы   школьник   учится   самостоятельно   определять   цель   своей   деятельности, планировать ее, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат. Предлагаемый набор заданий имеет целью формирование регулятивных универсальных учебных действий   (контроля,   самопроверки   и взаимопроверки   решения   задачи).   Как   показывает   практика, упражнениями   для   развития   способности   обнаруживать   ошибки   является   парная   взаимопроверка самостоятельной   работы,   проверка   работы   ученика,   выполненной   учителем   без   исправления и подчеркивания   ошибок.   При   этом   указывается   задание,   в котором   сделана   ошибка.   Эту   работу, в зависимости  от уровня  внимательности  учащегося,  можно  разбить  на этапы:  на первом  указывается строка, в которой сделана ошибка, на втором — блок строк записи, на третьем — только задание.  Покажем организацию работы на примере проведения математического диктанта. Тема: Решение уравнений  Задание 1. Запишите уравнение и решите его:  1) Разность «икс» и восьми равна девяти.  2) Сумма «игрек» и трех равна минус семи.  3) Минус два «икс» равны минус шести.  2. Решите уравнение  5y=3y+16   Ответ x−8=9 x=9+8 x=17 Ответ:  x=17 y+3=−7 y=−7−3 y=−10 Ответ:  y=−10 −2x=−6 x=−6:(−2) x=3 Ответ:  x=3 5y=3y+16 5y−3y=16 2y=16 y=16:2 y=8 Ответ:  y=8 3. Является ли линейным уравнение в задании 2?  4. Изменятся ли корни уравнения, если к обеим его частям   прибавить одно и то же число?  5. Верно ли высказывание (да или нет): 1) Решить уравнение — значит найти все его корни или  убедиться, что корней нет.  2) Если обе части уравнения умножить на одно и то же число, не  равное нулю, то корни уравнения не изменятся. Да Нет Да Да На доске заранее написаны ответы. После написания диктанта ответы открываются, и каждый ученик   самостоятельно   проверяет   свою   работу   и оценивает ее,   согласно   критериям,   предложенным учителем. (Данный   вид   проверки,   прежде   всего,   направлен   на развитие   внимания   и умения   адекватно оценивать себя самого).  Ученики   меняются   тетрадями   и осуществляют   взаимопроверку,   с последующей   проверкой учителем или с последующим обсуждением в паре допущенных ошибок.  (Появляется   элемент   ответственности   за партнера,   развивается   внимание,   появляется необходимость начать обсуждение ошибок, а значит вступить в диалог). Каждый   обучающийся   самостоятельно   оценивает   свою   работу,   еще   не зная   ответов,   то есть, опираясь   на интуицию   или   реально   представляя   свои   знания.   После   этого   осуществляется взаимопроверка. Результаты сравниваются, и выставляется итоговая оценка. Развивая   регулятивные   УУД,   необходимо   акцентировать   внимание   учащихся на правдоподобность   ситуации.   К примеру,   количество   человек   должно   быть   выражено   натуральным числом,   скорость   автомобиля,   движущегося   на большом   отрезке   пути,   не может   равняться   1км/ч, температура   воздуха   не может   равняться   1000 градусов.   Однако   ответ   может   показаться правдоподобным, но не соответствовать данным. Например, собственная скорость теплохода не может быть   меньше   скорости   течения   реки.   Масса   товара   в упаковке   должна   быть   больше   его   массы   без упаковки, время в пути с остановкой больше времени в пути тем же способом по тому же маршруту, но без   остановки.   Налог   не может   быть   больше   стоимости.   Поэтому   следует   учить   учащихся рассматривать   данные   и найденные   величины   в сравнении.   Также   при   решении   задач   не стоит пренебрегать   «прикидкой»   полученного   результата.   Все   вышеперечисленные   способы   опираются на повседневный   опыт   учащихся   и находят   у них   положительный   отклик   за простоту   исполнения. В типовые задания, обеспечивающие развитие функций самоконтроля должны входить такие как: «Найди ошибку», «Реши несколькими способами», «Оцени результат» и т. п. Обзор   литературы   и обобщение   опыта   преподавания   математики   свидетельствует,   что в формировании регулятивных УУД возможно использование и таких приемов, как: работа с учебником (Интернет­ресурсами, справочниками), составление плана ответа по математике, организация домашней работы,   выполнение   письменной   работы   по математике,   изучение   содержания   теоремы.   При   работе с книгой нужно добиваться того, чтобы учащийся оценивал знание материала не потому, сколько он раз прочитал текст учебника, а по умению сознательно и подробно излагать содержание прочитанного [7]. Приведем примерный состав некоторых из этих приемов. Работа с учебником математики: 1. Найти задание по оглавлению 2. Обдумать заголовок (т. е. ответить на вопросы: о чем пойдет речь? Что мне предстоит узнать? Что я уже знаю об этом?); 3.   Прочитать   содержание   пункта   параграфа;   выделить   все   непонятные   слова   и выражения, выяснить их значение (в Интернете, справочнике, словаре); 4.   Задать   по ходу   чтения   вопросы   и ответить   на них   (О чем   здесь   говорится?   Что   мне   уже известно об этом? Что именно об этом сообщается? Чем это можно объяснить? Как это соотносится с тем, что я уже знаю? С чем это нужно не перепутать? Что из этого должно получиться? К чему это можно применить?) 5. Выделить основные понятия в тексте; 6. Выделить основные теоремы или правила; 7. Изучить определения понятий, теорем (правил); 8. Изучить теоремы (правила); 9. Разобрать конкретные примеры в тексте и придумать свои; 10. Самостоятельно провести доказательство теоремы; 11. Составить схемы, рисунки, чертежи по имеющейся информации; 12.   Запомнить   материал,   используя   приемы   запоминания   (пересказ   по схеме,   мнемонические приемы, повторение трудных мест); 13. Ответить на конкретные вопросы в тексте; 14. Придумать и задать себе вопросы. Составление плана ответа по математике: 1. Выделить понятия, которым нужно дать определение; 2. Выделить теоремы, правила, которые нужно сформулировать; 3. Выделить определения, теоремы, на которые нужно сослаться при доказательстве; 4. Составить доказательство теоремы или правила; 5. Продумать записи на доске во время ответа; 6. Показать, где и как применяется теорема (правило); 7. Сделать вывод. Таким образом, формирование УУД успешно реализуется в процессе обучения математике. При этом   знания,   умения   и навыки   рассматриваются   как   производные   от соответствующих   видов целенаправленных действий. Овладение универсальными учебными действиями ведет к формированию способности   самостоятельно   успешно   усваивать   новые   знания,   получение   умений   и компетенций, включая самостоятельную организацию процесса усвоения знаний. Критерием сформированности регулятивных действий может стать способность:     выбирать средства для своего поведения ∙планировать,   контролировать   и   выполнять   действие   по   заданному   образцу,   правилу,   с использованием норм. планировать результаты своей деятельности и предвосхищать свои ошибки начинать и заканчивать свои действия в нужный момент На примере разработки урока математики в 5 классе на тему «Вычитание дроби из натуральных чисел» показано, как можно спланировать  работу по формированию УУД на каждом этапе урока. Ход урока. 1. Организационный момент Цели: формирование личностных и регулятивных УУД. Личностные: соблюдение моральных норм, умение настроить себя на рабочий лад. Регулятивные:   начинать   и   заканчивать   свои   действия   в   нужный   момент,   контролировать   и выполнять действия по заданному образцу, правилу, с использованием норм. 2. Повторение ранее изученного материала.  Актуализация знаний. Цели: формирование коммуникативных, познавательных и регулятивных УУД Коммуникативные:  умение   формулировать   правило   выполнения   сложения   и   вычитания обыкновенных дробей с использованием математических терминов как обыкновенная дробь; Познавательные: формирование основных мыслительных операций в ходе   устных вычислений; построение логической цепочки рассуждений Регулятивные:   контроль,   умение самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат. 3. Физкультминутка. Цели: формирование личностных и регулятивных УУД. Регулятивные: выполнять действие по заданному образцу, правилу. Личностные: уровень развития морального сознания: 4. Прослушивание сообщения изучение нового материала и через организацию проблемной ситуации. Цели:  формирование,   познавательных   коммуникативных   и   личностных   УУД   ,   формирование   ИКТ компетентности Познавательные: выдвижение гипотез и их обоснование, обоснование этапов решения учебной задачи, анализ   и   преобразование   информации,   основные   мыслительные   операции   (анализ,   синтез, классификации, сравнение, аналогия и т.д.), составление алгоритма вычитания обыкновенной дроби из натурального числа; умение анализировать и отбирать информацию; Коммуникативные:     формирование   речевых   умений   высказывать   суждения,   строить   фразы   с использованием математических терминов и понятий, отвечать на поставленные вопросы, умения учитывать   позицию   собеседника   (партнера),   организовать   и   осуществить   сотрудничество   и кооперацию с учителем и сверстниками, адекватно передавать информацию; Личностные: возможность   самостоятельно определять и высказывать самые простые общие для всех людей правила поведения при общении и сотрудничестве, а так же формирование личной мотивации   необходимости изучения данной темы для каждого школьника. Формирование ИКТ  – компетенции: использование Интернет – ресурсов, критического отношения к информации и избирательности её восприятия; поиск информации; фиксация (запись) информации с помощью различных технических средств; 5. Закрепление изученного материала. 1) Практическая работа. (Один учащийся работает у доски, другие работают в тетрадях и   помогают ему с места). Цель:   формирование   познавательных   общеучебных   и   логических   действий,   включающих   выбор наиболее   эффективных   способов   решения   заданий,   умения   логически   рассуждать,   сравнивать, доказывать и анализировать ситуации, возникающие в ходе решения; формирование коммуникативных УУД, которые обеспечивают возможности сотрудничества учеников: умение   слушать   и   понимать   партнера,   планировать   и   согласованно   выполнять   совместную деятельность. 2)   Индивидуальная   работа   по   карточкам   с   заданиями   базового   и   высокого   уровня   сложности (дифференцированная работа). Формирование познавательных УУД: выдвижение гипотез  и их обоснование, построение логической цепочки рассуждений, анализ выполнения способов решения задачи. 3) Домашняя работа. Цели: формирование познавательных действий, определяющих умение ученика, выделять тип задач и способы   их   решения   производить   анализ   и   преобразование   информации,   формирование регулятивных   действий,   заключающихся   в   умении   самостоятельно   определять   цель   своей деятельности,  двигаться по заданному плану, которым является алгоритм вычитания обыкновенных дробей из натуральных чисел , оценивать и корректировать полученный результат. 6. Итог урока. Рефлексия. (Подводят учащиеся) Цель: формирование познавательных, личностных и регулятивных УУД,  Познавательные:  умение   анализировать,   обобщать,   систематизировать   информацию,   полученную   на уроке, а так же делать выводы о необходимости изучения данного материала.  Личностные: полнота ориентации учащихся на моральное содержание ситуации.  Регулятивные: Начинать и заканчивать свои действия в нужный момент. В   результате   проведенного   урока   удается   реализовать   формирование личностных,   регулятивных, познавательных, а так же коммуникативных УУД. Надо принять во внимание, что формирование УУД – это работа не одного дня, а длительный, непрерывный процесс. Организуя, учебную деятельность по предмету учитывайте возможности и способности учеников. Помните,   что   главным   является   не   предмет,   которому   ВЫ   учите,   а   личность,   которую   ВЫ Помогите ребенку адекватно оценивать ту работу, которую он сделал. Помните,   что   знает   материал   не   тот,   кто   пересказывает   материал,   а   кто   его   применяет   на Советы и предложения. 1. 2. формируете. 3. 4. 5. практике. Научите ребенка высказывать свои мысли. Источники 1. http://nsportal.ru/shkola/obshchepedagogicheskie­ tekhnologii/library/2014/11/12/formirovanie­universalnykh­uchebnykh 2. http://vestnik.kuzspa.ru/articles/112/ Приложение 1 Алгоритм общего приема решения математической задачи:  1. Изучить содержание задачи. 2. Если нужно провести анализ — поиск решения. 3. На основе анализа составить план решения или сформулировать известный план решения задач данного класса. 4. Решить задачу по составленному плану. 5. Если нужно, проверить или исследовать решение. 6. Рассмотреть другие возможные способы решения, выбрать наиболее рациональный. 7. Записать ответ. Приложение 2 Примеры заданий по развитию универсальных учебных действий Развиваемые умения Планируемый результат Примеры исследовательских заданий по математике, 5­6 класс Развитие   умений   видеть проблемы   Формирование   и   развитие способности изменять собственную   точку   зрения, смотреть объект исследования с разных сторон на     1.   Рассмотреть   понятие   «масштаб»   с точки зрения географа, математика и фотографа. 2. «Нет ли здесь ошибки: Вычитаемые и   прибавляемые,   есть   такие   числа?», «Какой смысл содержит фраза: «Твой ум без числа ничего не представляет? (Н. Кузанский, немецкий философ)» Развитие   умений   выдвигать гипотезы Формирование  логического  и интуитивного мышления. Развитие   умения   задавать вопросы   Формирование умения поиска ответа, пробуждая потребность познаний, приобщая   школьника   к умственному труду   1.   Дан   квадрат   со   стороной   5Х5 клеток,   в   каждую   из   которых случайным   образом   вписаны   числа. Требуется   найти   в   таблице последовательность   чисел,   сделать вывод   о   наиболее   эффективном способе выстраивания последовательности чисел в таблице. 2. Найти правило, закономерность. 1. Задание «Угадай, о чем спросили?» Ученик   выходит   к   доске,   вслух отвечает   на   вопрос,   написанный   на карточке. Например:   это число делится на два (надо угадать   вопрос   —   какое   число называется четным?) надо   к   собственной   скорости прибавить скорость течения (как найти скорость по течению) и т.д.   2.   «Определи   понятие»,   при   этом задаются   только   вопросы:   Зачем? Почему? Как? Что? Приложение 3 Математический  диктант «Решение уравнений» Задание 1. Запишите уравнение и решите его:  1) Разность «икс» и восьми равна девяти.  2) Сумма «игрек» и трех равна минус семи.  3) Минус два «икс» равны минус шести.  2. Решите уравнение  5y=3y+16   Ответ x−8=9 x=9+8 x=17 Ответ:  x=17 y+3=−7 y=−7−3 y=−10 Ответ:  y=−10 −2x=−6 x=−6:(−2) x=3 Ответ:  x=3 5y=3y+16 5y−3y=16 2y=16 y=16:2 y=8 Ответ:  y=8 3. Является ли линейным уравнение в задании 2?  4. Изменятся ли корни уравнения, если к обеим его частям   прибавить одно и то же число?  5. Верно ли высказывание (да или нет): 1) Решить уравнение — значит найти все его корни или  убедиться, что корней нет.  2) Если обе части уравнения умножить на одно и то же число, не  равное нулю, то корни уравнения не изменятся. Да Нет Да Да Приложение 4 План урока математики «Вычитание дроби из натуральных чисел» Ход урока. 1. Организационный момент Цели: формирование личностных и регулятивных УУД. Личностные: соблюдение моральных норм, умение настроить себя на рабочий лад. Регулятивные: начинать и заканчивать свои действия в нужный момент, контролировать и выполнять действия по заданному образцу, правилу, с использованием норм. 2. Повторение ранее изученного материала.  Актуализация знаний. Цели: формирование коммуникативных, познавательных и регулятивных УУД Коммуникативные:  умение формулировать правило выполнения сложения и вычитания обыкновенных дробей с использованием математических терминов как обыкновенная дробь; Познавательные:   формирование   основных   мыслительных   операций   в   ходе   устных   вычислений; построение логической цепочки рассуждений Регулятивные:   контроль,   умение   самостоятельно   двигаться   по   заданному   плану,   оценивать   и корректировать полученный результат. 3. Физкультминутка. Цели: формирование личностных и регулятивных УУД. Регулятивные: выполнять действие по заданному образцу, правилу. Личностные: уровень развития морального сознания: 4. Прослушивание сообщения изучение нового материала и через организацию проблемной ситуации. Цели:  формирование,   познавательных   коммуникативных   и   личностных   УУД   ,   формирование   ИКТ компетентности Познавательные: выдвижение гипотез и их обоснование, обоснование этапов решения учебной задачи, анализ и преобразование информации, основные мыслительные операции (анализ, синтез, классификации, сравнение, аналогия   и   т.д.),   составление   алгоритма   вычитания   обыкновенной   дроби   из   натурального   числа;   умение анализировать и отбирать информацию; Коммуникативные:     формирование речевых умений высказывать суждения, строить фразы   с использованием математических   терминов   и   понятий,   отвечать   на   поставленные   вопросы,   умения   учитывать   позицию собеседника   (партнера),   организовать   и   осуществить   сотрудничество   и   кооперацию   с   учителем   и сверстниками, адекватно передавать информацию; Личностные: возможность   самостоятельно определять и высказывать самые простые общие для всех людей правила   поведения   при   общении   и   сотрудничестве,   а   так   же   формирование   личной   мотивации    необходимости изучения данной темы для каждого школьника. Формирование ИКТ – компетенции: использование Интернет – ресурсов, критического отношения к информации и избирательности её восприятия; поиск информации; фиксация (запись) информации с помощью различных технических средств; 5. Закрепление изученного материала. 1) Практическая работа. (Один учащийся работает у доски, другие работают в тетрадях и     помогают ему с места). Цель:   формирование   познавательных   общеучебных   и   логических   действий,   включающих   выбор   наиболее   умения   логически   рассуждать,   сравнивать,   доказывать   и эффективных   способов   решения   заданий, анализировать ситуации, возникающие в ходе решения; формирование коммуникативных УУД, которые обеспечивают возможности сотрудничества учеников: умение слушать и понимать партнера, планировать и согласованно выполнять совместную деятельность. 2)   Индивидуальная   работа   по   карточкам   с   заданиями   базового   и   высокого   уровня   сложности (дифференцированная работа). Формирование   познавательных   УУД:   выдвижение   гипотез   и   их  обоснование,   построение   логической  цепочки рассуждений, анализ выполнения способов решения задачи. 3) Домашняя работа. Цели: формирование познавательных действий, определяющих умение ученика, выделять тип задач и способы их решения   производить   анализ   и   преобразование   информации,   формирование   регулятивных   действий, заключающихся   в   умении   самостоятельно   определять   цель   своей   деятельности,   двигаться   по   заданному плану, которым является алгоритм вычитания обыкновенных дробей из натуральных чисел , оценивать и корректировать полученный результат. 6. Итог урока. Рефлексия. (Подводят учащиеся) Цель: формирование познавательных, личностных и регулятивных УУД, Познавательные: умение анализировать, обобщать, систематизировать информацию, полученную на уроке, а так же делать выводы о необходимости изучения данного материала.  Личностные: полнота ориентации учащихся на моральное содержание ситуации.  Регулятивные: Начинать и заканчивать свои действия в нужный момент.

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики

Формирование регулятивных УУД на уроках математики
Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.
11.02.2017